

RANK BOOSTER

1000+ Performance

Boosters..

^{for}JEE (MAIN)

Best problems to revise, strengthen & clarify the concepts.

- > Topic Wise 1000+ Questions.
- 6 Part Syllabus Test.
- > 3 Full Syllabus Test.
- Covers Class XI & Class XII Syllabus.
- Complete Solutions.

MATHEMATICS

Contents

Mathematics

SECTION-I (TOPIC WISE PROBLEMS)

S.No.	Topic	Page No.
		rage nu.
1.	STRAIGHT LINE	001-005
2.	CIRCLE	006-010
3.	PARABOLA	011-014
4.	ELLIPSE	015-019
5.	HYPERBOLA	020-023 '
6.	SET & RELATION	024 - 026
7.	FUNCTION	027 - 030
8.	LIMIT OF FUNCTION	031-034
9.	CONTINUITY & DERIVABILITY	035-038
10.	METHOD OF DIFFERENTIATION	039-041
11.	APPLICATION OF DERIVATIVES	042 - 046
12.	INDEFINITE INTEGRAL	047 - 052
13.	DEFINITE INTEGRAL	053 - 057
14.	AREA UNDER CURVE	058-061
15.	DIFFERENTIAL EQUATION	062 - 065
16.	QUADRATIC EQUATION	066 - 068
17.	SEQUENCE & SERIES	069 - 072
18.	BINOMIAL THEOREM & MATHEMATICAL INDUCTION	073 - 076
19.	PERMUTATION & COMBINATION	077 - 080
20.	PROBABILITY	081-084
21.	MATRICES & DETERMINANTS	085 - 089
	COMPLEX NUMBER	090 - 093
22.		094 - 097
	VECTORS	098 - 101
	THREE DIMENSIONAL GEOMETRY	102 - 106
25.		107 - 110
26.		111-113
27.	INVERSE TRIGONOMETRIC FUNCTION	114 - 117
28	STATISTICS	
	MATHEMATICAL REASONING	118-121
29.	NOATTILITY OF A	

A Resonance

stions.

	Resonance Rank Booster	(RRB) JER-Main	
Math	ontents SECTION-II (PRACTICE TEST PAPERS	S)	Mathematics
U	Particular	Page No.	Answer
-	SVI LABUS TEST)		5
0	DT-01 (COORDINATE GEOMETRY SAME -	122 - 124	
	PT-02 (ALGEBRA-1_CLASS XI)	125 - 127	
	PT-03 (ALGEBRA- 2 & TRIGONOMETRY_CLASS XI)	128 - ₁₃₀	
	✤ PT-04 (DIFFERENTIAL CALCULUS_CLASS XII)	131 - 133	
	✤ PT-05 (INTEGRAL CALCULUS_CLASS XII)	134 - 137	
	✤ PT-06 (ALGEBRA-2 & GEOMETRY-3-D_CLASS XII)	138 - 141	
0	3 FST (FULL SYLLABUS SUBJECT TEST)		
	✤ FST-01 (XI SYLLABUS)	142 - 144	
	 FST-02 (XII SYLLABUS) 	145 - 148	

•

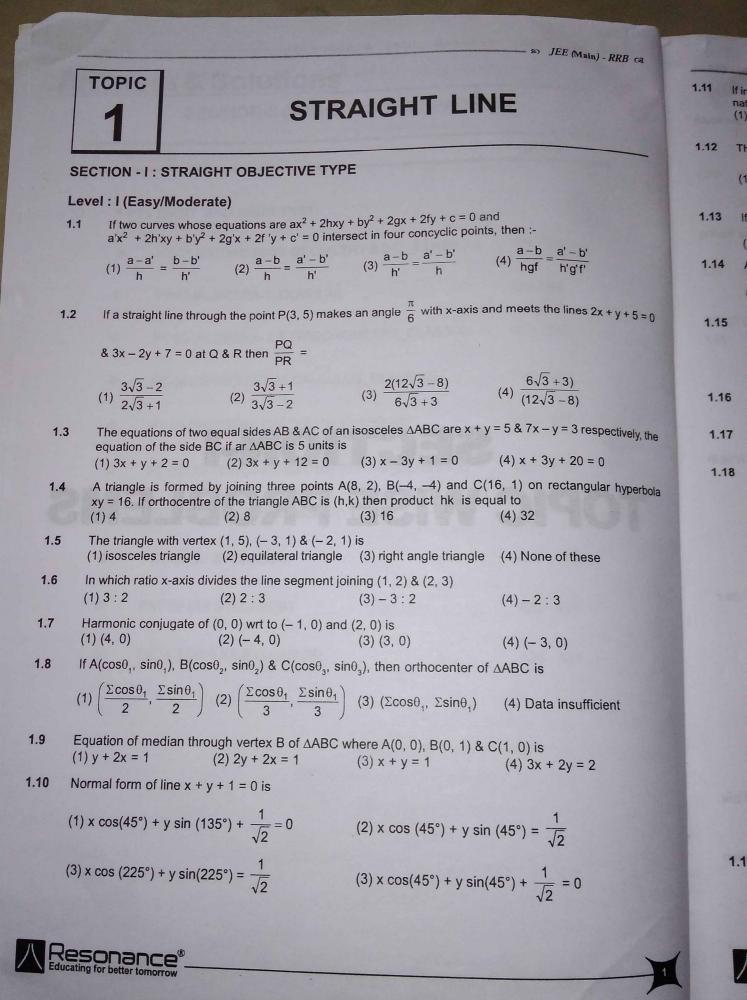
An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

FST-03 (XI + XII SYLLABUS)

149 - 151

Ln

Answers & Solutions


	SECTION-I (TOPIC WISE PROBLEMS	5)
S.No.	Topic	Page No.
1.	STRAIGHT LINE	450 460
2.	CIRCLE	152 - 160 161 - 170
3.	PARABOLA	171 - 180
4.	ELLIPSE	181 - 191
5.	HYPERBOLA	192 - 199
6.	SET & RELATION	200 - 204
7.	FUNCTION	205 - 213
8.	LIMIT OF FUNCTION	214 - 221
9.	CONTINUITY & DERIVABILITY	222 - 229
10.	METHOD OF DIFFERENTIATION	230 - 234
11.	APPLICATION OF DERIVATIVES	235 - 243
12.	INDEFINITE INTEGRAL	244 - 253
13.	DEFINITE INTEGRAL	254 - 262
14.	AREA UNDER CURVE	263 - 272
15.	DIFFERENTIAL EQUATION	273 - 281
16.	QUADRATIC EQUATION	282 - 287
17.	SEQUENCE & SERIES	288 - 295
18.	BINOMIAL THEOREM & MATHEMATICAL INDUCTION	296 - 301
19.	PERMUTATION & COMBINATION	302 - 306
20.	PROBABILITY	307 - 312
21.	MATRICES & DETERMINANTS	313 - 321
22.	COMPLEX NUMBER	322 - 329
	VECTORS	330 - 336
23.	THREE DIMENSIONAL GEOMETRY	337 - 342
24.	THREE DIMENSIONAL GLOBAL & FOUNTION	343 - 351
25.	TRIGONOMETRIC IDENTITIES & EQUATION	352 - 361
26.	SOLUTION OF TRIANGLES & HEIGHT DISTANCE	362 - 365
27.	INVERSE TRIGONOMETRIC FUNCTION	366 - 373
28.	STATISTICS	374 - 377
29.	MATHEMATICAL REASONING	

Resonance -

MathematicsResonance Rank Boo	oster (RRB) JEE-Main				
Answers & Solutions SECTION-II (PRACTICE TEST PA	nswers & Solutions SECTION-II (PRACTICE TEST PAPERS)				
Particular	Page No.				
O 6 PTs (PART SYLLABUS TEST)					
PT-01 (COORDINATE GEOMETRY & 2-D _CLASS	i XI) 378 - 384				
PT-02 (ALGEBRA-1_CLASS XI)	385-390				
PT-03 (ALGEBRA- 2 & TRIGONOMETRY_CLASS)	XI) 391 - 395				
PT-04 (DIFFERENTIAL CALCULUS_CLASS XII)	396 - 401				
PT-05 (INTEGRAL CALCULUS_CLASS XII)	402 - 407				
PT-06 (ALGEBRA-2 & GEOMETRY-3-D_CLASS XI	II) 408 - 413				
O 3 FST (FULL SYLLABUS SUBJECT TEST)					
FST-01 (XI SYLLABUS)	414 - 419				
 FST-02 (XII SYLLABUS) 	420 - 425				
FST-03 (XI + XII SYLLABUS)	426 - 431				

SECTION-I TOPIC WISE PROBLEMS

8) JEE (Main) - RRB CR If in a AABC, B is the orthocenter and if circumcenter of AABC is (2, 4) and vertex A is (0, 0) then coordi-1.11 nate of vertex C is (1)(4,2) (2)(4,8)(4) (8, 2) (3)(8,4)The equation of line passing through origin & at an angle of 30° with y = 1.12 x + 1 (1) $y - \sqrt{3} x$ (2) $\sqrt{3} y = x$ $(4) y = \sqrt{3} x$ $(3) - \sqrt{3} y = x$ If y = $\sqrt{3} x + 1$ is a angle bisector of L₁ & L₂ & if L₁ is y = $\frac{x}{\sqrt{3}} + 1$ then equation of L₂ is 1.13 (1) x = 0(2) y = 0(4) y = 1(3) x = 1Area of square having two sides y = x + 1 and y = x + 2 is 1.14 $(1)\frac{1}{2}$ (2) 1 (4) 4 (3) 2 Area of polygon having sides 1.15 y - x - 1 = 0, 2y - 2x + 2 = 0, y - 2x - 2 = 0 and 3y - 6x - 9 = 0(1) $\frac{1}{4}$ $(2) \frac{1}{2}$ (4) 2 (3) 4 If area of $\triangle ABC 5$ sq. unit where A(1, 1), B(2,2) and C lies on y = 2x then co-ordinate of C can be 1.16 (4) (20, 10) (1)(-10, -20)(2)(-10, 20)(3)(10, -20)Area of pentagon formed by (1, 2), (2, -1), (-2, -1), (2, 1) and (-1, 2) 1.17 (4) 10 (1) 20 (2) 15 (3) 5 Area included by y + x + 1 < 0 and $y + 2x + 1 \ge 0$ is 1.18 (2)(1)(0, -1)(4)Point on line x + y = 4 which is at a unit distance from the line 4x + 3y - 11 = 0 is (3) (-6, 10) (4) (10, -8) 1.19 (2)(0, 4)(1)(4,0)esona Educating for better tom

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

RB CR

= 0

۱e

a

- 80 JEE (Main) - RRB

wanter reput		and the first sector of the		(
1.20	Mirror image of (-3 (1) (-1, 3)	(2) (1, 3) (3, 5) in line mirror $x - y + 2 =$ (2) (1, 3)	ctor of lines L_1 and L_2 and p	(4) (3, 1) point (0, 0) lies on L ₁ , then _{acute} (4) data insufficient	1.35 On the states
1.21	angle hisector OI L	(2) x + y + 1 = 0	(3) x + 2y + 1 = 0 containing (2)		co–o (1) (2
1.22	Bisector of angle be $(1) x + y = 0$	(2) $x + y + 1 = 0$ etween $x + 2y - 1 = 0$ and 2 (2) $x - y + 1 = 0$	(3) x + y + 2 = 0	(4) $x - y + 2 = 0$ nt is	1.36 If P
1.23	Point where all lines	(2) x - y + 1 = 0 s of family x(a + 2b) + y (a + (2) (2, -1)	(3) (1, 2)	(4) $(1, -2)$	betv
1.24	Equation of line pas	ssing through point of inter	rsection of x + y + 2 - 0	and $x - y + 4 = 0$ and having	(1)
	x-intercept = 0 (1) x + 3y = 2	(2) $3x + y = 0$	(3) $2x + y + 5 = 0$	(4) x + 3y = 0	. ,
1.25	If the slope of one lin (1) 2	ne is double the other in lin (2) 4		hen b = ? (4) 8	1.37 If v (1)
1.26	(1) $ax^2 + 2hxy - by^2$ (3) $bx^2 - 2hxy + ay^2$	= 0	(4) $bx^2 + 2hxy + 2y^2 = 0$		SECTIOI 1.38 St
1.27	The sum of square of	of distances of a point from	axes is 4 then its locus is		St (1
	(1) $\sqrt{x^2 + y^2} = 14$	(2) $\sqrt{x^2 + y^2} = 12$	(3) $x^2 + y^2 = 4$	(4) $x^2 + y^2 = 16$	(1 (2 (3
Level	: II (Tough)				(3 (4
1.28		ranslated parallel to the line ne co-ordinates of A' are	e x – y = 3 by a distance 4	units. If its new position A' is in	1.39 S
	(1) $(2-2\sqrt{2}, 1-2\sqrt{2})$) (2) $(2+2\sqrt{2}, 2-2\sqrt{2})$	(3) $(-2+2\sqrt{2}, 2\sqrt{2}+1)$	(4) $(2\sqrt{2}-1, 2\sqrt{2}+2)$	ş
.29	Find point P on x-axis	s such that (AP + PB) is mi	inimum where A(1, 1) & B	(3, 4)	(
	$(1)\left(\frac{7}{5},0\right)$	$(2) \left(\frac{9}{5}, 0\right)$	$(3)\left(\frac{6}{5},0\right)$	(4) (2, 0)	
30	The distance of (0, 0)	from $y = 2x + 2$ measured	l along y = x		1.40
(1) 1	(2) $\sqrt{2}$	(3) 2	(4) $\frac{1}{2}$	
31 ∖	/alues of α if (α , 2 α)	lies inside the $\triangle ABC$ if A(C), 2), B(2, 0) and C(4, 4)		
(*	1) $\alpha \in \left(\frac{1}{3}, \frac{2}{3}\right)$	$(2) \alpha \in \left(\frac{2}{3}, 1\right)$	$(3) \alpha \in \left(\frac{2}{3}, \frac{4}{3}\right)$	$(4) \alpha \in \left(\frac{1}{3}, 1\right)$	
2 D	istance between line:) 1	s represented by $x^2 + 2\sqrt{2}$		+ 1 = 0	
		(2) 2	(3) 3	(4) 4	1.41
	,	point of intersection of 5x is then k = ? (2) 1		/ + 3 = 0 and x + ky - 1 = 0 are	1.41
A v loc	variable line passing t us of centroid of the	through fixed point (a, b) in	(3) – 1 ntersect the coordinate a	(4) – 2 axes at A and B if O is origin, ^{then}	
(1)	bx + ay - 3xy = 0	(2) bx + ay $- 2xy = 0$	(3) $ax + by - 3xy = 0$	(4) ax + by $- 2xy = 0$	

CB CB

acute

ving

in

- so JEE (Main) - RRB CR

On the portion of the straight line x + 2y = 4 intercepted between the axes, a square is constructed on 1.35 the side of the line away from the origin. Then the point of intersection of its diagonals has co-ordinates: (1)(2,3)(2)(3,2)(3)(3,3)(4) none If $P\left(1+\frac{t}{\sqrt{2}},2+\frac{t}{\sqrt{2}}\right)$ be any point on a line, then the range of values of t for which the point P lies 1.36 between the parallel lines x + 2y = 1 and 2x + 4y = 15 is $(1) - \frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6} \qquad (2) \ 0 < t < \frac{5\sqrt{2}}{6} \qquad (3) - \frac{4\sqrt{2}}{5} < t < 0 \qquad (4) \text{ none of these}$ If vertices of Δ are (8, -2), (2, -2) & (8, 6), then find its orthocenter 1.37 (1) (8, -2)(2)(8,6)(4) (-2, 2) (3)(2,2)**SECTION - II : ASSERTION & REASONING TYPE** Statement-1: There is only one circle passing through (-3, 4), (2, 1) & (7, -2) 1.38 Statement-2: Equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a circle if $\Delta \neq 0$, a = b $\neq 0$ and h = 0. (1) Statement-1 is true, statement-2 is true ; statement-2 is correct explanation for statement-1. (2) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for statement-1. (3) Statement-1 is true, statement-2 is false. (4) Statement-1 is false, statement-2 is true. Statement-1: Area of △ABC where A(20, 22), B(21, 24), C(22, 23) and area of △PQR where 1.39 P(0, 0), Q(1, 2), R(2, 1) is equal Statement-2: The area of \triangle be constant with respect to parallel transformation of co-ordinate axes. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True **Statement-1**: If the middle point of the sides of a $\triangle ABC$ are (0, 0), (1, 2), (-3, 4) then centroid of $\triangle ABC$ 1.40 is $\left(\frac{-2}{3}, 2\right)$ Statement-2: Centroid of a ABC and centroid of the triangle formed by joining the mid points of sides of ABC be always same (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True **Statement-1**: Two of the straight lines represented by the equation $ax^3 + bx^2y + cxy^2 + dy^3 = 0$ will be at right 1.41 angle if $a^2 + ac + bd + d^2 = 0$ **Statement-2** : If roots of equation $px^3 + qx^2 + rx + s = 0$ are α , β and γ , then $\alpha\beta\gamma = -s/p$. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True *lesonance*

50 JEE (Main) - RRB Ca		
 2x + 3y + 1 = 0 and 2x + 3y + 2 = 0 include thread other. Statement-2 : Diagonals of a parallelogram bisect each other. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False 	1.35	On t the co- (1)
(4) Statement-1 is False, Statement-2 is 1100 (4) State	1.36	lf F
4x + 3y - 12 = 0. Statement-2 : locus of point which is at equal distance from the two given intersecting lines is the angle bisectors of the two lines.		be (1
(2) Statement-1 is True, Statement-2 is True, Statement-2 is False	1.37	lf (1
Statement-1 Area of triangle formed by the line which is passing through the point (5, 6) such that segment of the line between axes is bisected at the point, with coordinate axes is 60 sq. units Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point Statement-2 : Area of triangle formed by line passing through point (α , β).	SE 1.38	CTIC s s s (
	Statement-2 : Diagonals of a parameter provide statement-2 is a correct explanator for Statement-1. (1) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is False (3) Statement-1 is False, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1 : Each point on the line $y - x + 12 = 0$ is at same distance from the lines $3x + 4y - 12 = 0$ and 4x + 3y - 12 = 0. Statement-2 : locus of point which is at equal distance from the two given intersecting lines is the angle bisectors of the two lines. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is True; Statement-1 is True, Statement-2 is True; Statement-1 hare of triangle formed by the line which is passing through the point (5, 6) such that segment of the line between axes is bisected at the point, with coordinate axes is 60 sq. units Statement-2 : Area of triangle formed by line passing through point (α , β), with axes is maximum when point (α , β) is mid point of segment of line between axes.	Statement-1 : The diagonals of the quadrilateral whose sides are $3x + 2y + 1 = 0$, $3x + 2y + 2 = 0$, $2x + 3y + 1 = 0$ and $2x + 3y + 2 = 0$ include an angle $\pi/2$ 1.35Statement-2 : Diagonals of a parallelogram bisect each other.(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.(3) Statement-1 is True, Statement-2 is False(4) Statement-1 is False, Statement-2 is True;(4) Statement-2 : Cocus of point which is at equal distance from the two given intersecting lines is the angle(5) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(3) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.(3) Statement-1 is True, Statement-2 is False(4) Statement-1 is False, Statement-2 is TrueStatement-1 is False, Statement-2 is TrueStatement-1 is False, Statement-2 is TrueStatement-2 is correct explanation for Statement-1.(3) Statement-1 is False, Statement-2 is TrueStatement-1 is False, Statement-2 is TrueStatement-1 is False, Statement-2 is False(4) Stateme

1.39

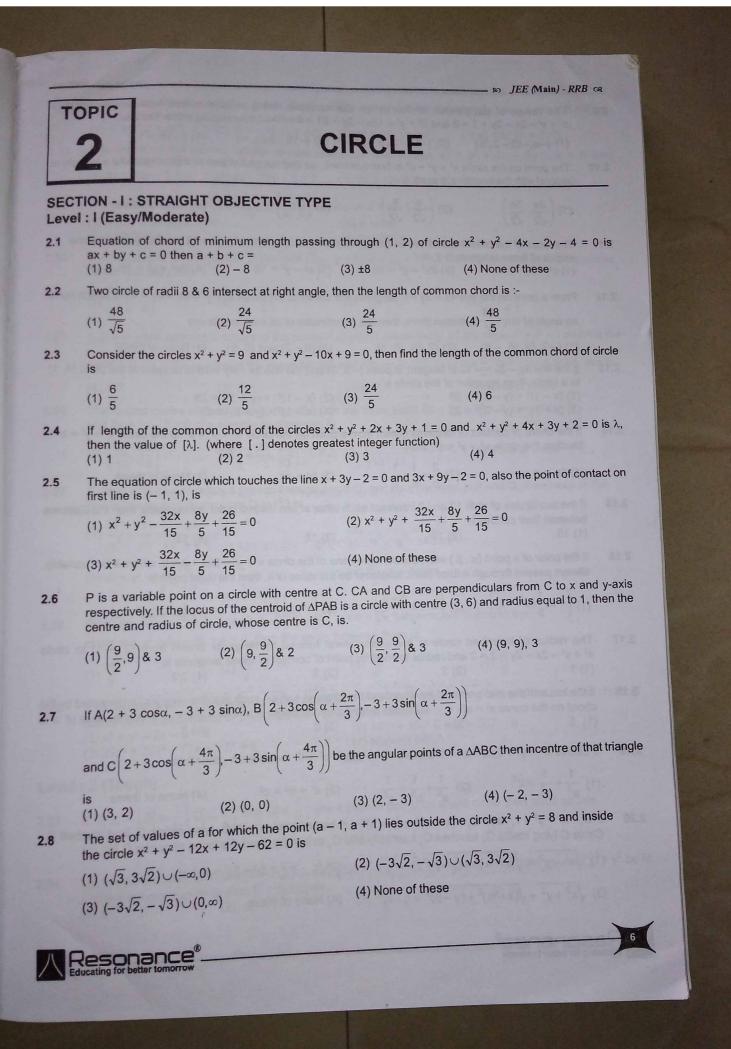
1.40

1.41

	co-ordinates :	away from the origin	ntercepted between the an . Then the point of int	axes, a square is constructed on tersection of its diagonals has
	(1) (2, 3)	(2) (3, 2)	(3) (3, 3)	(4) none
.36	If $P\left(1+\frac{t}{\sqrt{2}},2+\frac{t}{\sqrt{2}}\right)$	be any point on a line	e, then the range of valu	es of t for which the point P lies
	Parano	x + 2y = 1 and x	2x + 4y = 15 is	
	$(1) - \frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$	(2) $0 < t < \frac{5\sqrt{2}}{6}$	$(3) - \frac{4\sqrt{2}}{5} < t < 0$	(4) none of these
.37	If vertices of Δ are (8, (1) (8, -2)	- 2), (2, - 2) & (8, 6), th (2) (8, 6)	en find its orthocenter (3) (2, 2)	(4) (-2, 2)
	(1) Statement-1 is true(2) Statement-1 is true(3) Statement-1 is true	e, statement-2 is true ; ; e, statement-2 is true ; ;	statement-2 is correct exp	a circle if $\Delta \neq 0$, a = b $\neq 0$ and h = 0. planation for statement-1. act explanation for statement-1.
	(4) Statement-1 is fals	e, statement-2 is true.		
39	Statement-1 : Area P(0, 0), Q(1, 2), R(2, 1 Statement-2 : The a (1) Statement-1 is True (2) Statement-1 is True (3) Statement-1 is True	of \triangle ABC where A(20, 2 I) is equal area of \triangle be constant w e, Statement-2 is True; e, Statement-2 is True; e, Statement-2 is False	Statement-2 is a correct Statement-2 is NOT a co e	and area of \triangle PQR where reformation of co-ordinate axes. t explanation for Statement-1. correct explanation for Statement-1
9	Statement-1: Area P(0, 0), Q(1, 2), R(2, 4) Statement-2: The a (1) Statement-1 is True (2) Statement-1 is True (3) Statement-1 is True (4) Statement-1 is False	of \triangle ABC where A(20, 2 I) is equal area of \triangle be constant w e, Statement-2 is True; e, Statement-2 is True; e, Statement-2 is False se, Statement-2 is True	ith respect to parallel tran Statement-2 is a correct Statement-2 is NOT a co e	nsformation of co-ordinate axes. explanation for Statement-1.
	Statement-1: Area P(0, 0), Q(1, 2), R(2, 4) Statement-2: The a (1) Statement-1 is True (2) Statement-1 is True (3) Statement-1 is True (4) Statement-1 is Fals Statement-1: If the is $\left(\frac{-2}{3}, 2\right)$	of \triangle ABC where A(20, 2 I) is equal area of \triangle be constant w e, Statement-2 is True; e, Statement-2 is True; e, Statement-2 is False se, Statement-2 is True middle point of the sid	ith respect to parallel tran Statement-2 is a correct Statement-2 is NOT a co e e es of a \triangle ABC are (0, 0),	nsformation of co-ordinate axes. t explanation for Statement-1. prrect explanation for Statement-1

∆ABC be always same (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True


Statement-1: Two of the straight lines represented by the equation $ax^3 + bx^2y + cxy^2 + dy^3 = 0$ will be at right 1.41

angle if $a^2 + ac + bd + d^2 = 0$ **Statement-2** : If roots of equation $px^3 + qx^2 + rx + s = 0$ are α , β and γ , then $\alpha\beta\gamma = -s/p$.

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

80 JEE (Main) - RRB CR **Statement-1**: The diagonals of the quadrilateral whose sides are 3x + 2y + 1 = 0, 3x + 2y + 2 = 0, 2x + 3y + 4 = 01.42 TOPIC 2x + 3y + 1 = 0 and 2x + 3y + 2 = 0 include an angle $\pi/2$ Statement-2 : Diagonals of a parallelogram bisect each other. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True SECTION - I : STR Statement-1 : Each point on the line y - x + 12 = 0 is at same distance from the lines 3x + 4y - 12 = 0 and Level : I (Easy/Mo 1.43 Statement-2 : locus of point which is at equal distance from the two given intersecting lines is the angle 2.1 Equation of c ax + by + c =(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (1) 8 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 2.2 Two circle of (1) 48/√5 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1 Area of triangle formed by the line which is passing through the point (5, 6) such that segment 2.3 Consider the 1.44 of the line between axes is bisected at the point, with coordinate axes is 60 sq. units is **Statement-2** : Area of triangle formed by line passing through point (α , β), with axes is maximum when point $(1) \frac{6}{5}$ (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (α, β) is mid point of segment of line between axes. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 If length of 2.4 then the val (3) Statement-1 is True, Statement-2 is False (1) 1 (4) Statement-1 is False, Statement-2 is True 2.5 The equation first line is (1) $x^2 + y^2$ $(3) x^2 + y^2$ 2.6 P is a var respectiv centre ar $\left(\frac{9}{2},9\right)$ (1) 2.7 If A(2 + and C is (1) (3, The s 2.8 the ci (1) (-(3) (lesonance Educating for better ton

2.9	The range of parameter 'a' for which the variable line $y = 2x' + a$ lies between the circles $x^2 + y^2 - 2x - 2y + 4 = 0$ without intersecting either circle is	2.21 If
		01 (1
	(1) $(-\infty, -15 - 2\sqrt{5})$ (2) $(-15 + 2\sqrt{5}, -\sqrt{5} - 1)$ (3) $(-15 + 2\sqrt{5}, \infty)$ (4) $(-15, -1)$	2.22 T
2.10	The point on the circle $x^2 + y^2 = a^2$ in first quadrant, so that tangent drawn at this point make a triangle of area a^2 with the coordinate axes, is	× (
	(1) $\left(\frac{3a}{\sqrt{2}}, \frac{3a}{\sqrt{2}}\right)$ (2) $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$ (3) $\left(\frac{a}{2}, \frac{a}{2}\right)$ (4) None of these	2.23
2.11	The locus of the point from where tangents are drawn to the circle $x^2 + y^2 = 16$ and the product of the slopes of these tangents is 2 is	2.24
	(1) $x^2 - 2y^2 = 16$ (2) $2x^2 - y^2 = 16$ (3) $x^2 - y^2 = 16$ (4) $2x^2 + y^2 = 10$	2.24
2.12	From a point on the line $4x - 3y = 6$ tangents are drawn to the circle $x^2 + y^2 - 6x - 4y + 4 = 0$ which make	
	an angle of tan ⁻¹ 24 between them, then the coordinates of all such points are	2.25
	(1) $(-2, 0)$, $(6, -6)$ (2) $(2, 0)$, $(6, 6)$ (3) $(0, -2)$ and $(6, 6)$ (4) None of these	
2.13	If the line $4x - 3y = -12$ is tangent at point (-3, 0) and the line $3x + 4y = 16$ is tangent at the point (4, 1) to a circle then executed of the sine is	
	(1) $(x - 1)^2 + (y - 3)^2 = 25$ (2) $(x - 1)^2 + (y + 3)^2 = 25$	2.26
	(3) $(x + 1)^2 + (y - 3)^2 = 25$ (4) $(x - 1)^2 + (y - 2)^2 = 25$ (4) $(x - 1)^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$	2.20
2.14	If the chord of contact of tangents drawn from a point on the circle $x^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$ touches the circle $x^2 + y^2 = c^2$, then	
	(1) $2b = a + c$ (2) $\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$ (3) $b^2 = ac$ (4) None of these	2.27
2.15	If the two circles of radii 12 and 9 intersect each other at two distinct point orthogonally, then the distance	2 emp
	between their centres is (1) 15 (2) 16 (3) 18 (4) 13	
2.16	If the polar of a point (α , β) with respect to any one of the circle $x^2 + y^2 - 2kx + 3 = 0$, where k is a variable, always passes through a fixed point, whatever be the value of k, then the fixed point is	
	$(1)\left(-\alpha,\frac{1}{\beta}(\alpha^2-3)\right) \qquad (2)\left(\alpha-3,\frac{\beta-3}{\alpha-3}\right) \qquad (3)\left(-\alpha,\frac{1}{\beta}\right) \qquad (4)\left(\alpha^2+3,\beta^2-3\right)$	2.2
2.17	The radius of inscribed circle in the quadrilateral formed by tangents drawn from $(3, -1)$ to circle $x^2 + y^2 - 2x - 2y - 2 = 0$ and radius formed by point of contact of these tangents is (1) 1 (2) 2 (3) 3 (4) 3/2	
	If the locus of the mid-points of the chords of the circle $x^2 + y^2 = 4$ such that the segment intercepted by the chord on the curve $x^2 = a(x + y)$ subtends a right angle at origin is $x^2 + y^2 = 2(x + y)$, then the value of 'a' is (1) 5 (2) - 2 (3) 2 (4) 3	e 2.: s
19	f circles $x^2 + y^2 + 2ax + c^2 = 0$ and $x^2 + y^2 + 2by + c^2 = 0$, touch each other then	
	1) $\frac{1}{a^2} + \frac{1}{b^2} = c^2$ (2) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ (3) $a^2 + b^2 = c^2$ (4) None of these	L
0 1	f $C_1 : x^2 + y^2 = r_1^2$ and $C_2 : (x - \alpha)^2 + (y - \beta)^2 = r^2$ be two circles with C_2 lying inside C_1 and touches C Circle C lying inside C_1 touches C_1 internally and C_2 externally, then the locus of centre C is.	-1. 1.
	1) $\sqrt{x^2 + y^2} = \sqrt{(x - \alpha)^2 + (y - \beta)^2}$ (2) $(x - \alpha)^2 + (y - \beta)^2 = x^2 + y^2$	
(:	3) $\sqrt{x^2 + y^2} + \sqrt{(x - \alpha)^2 + (y - \beta)^2} = r_1 + r_2$ (4) None of these	
Re	2SONANCE 7	

2.21	If two circles pass throug orthogonally, then	gh two points (0, a) ar	nd (0, - a) and touch th	e straight line y = mx + c will cut
	(1) $c^2 = a^2(2 + m^2)$		(3) $c^2 = a^2 (1 + m^2)$	
2.22	$x^2 + y^2 - 4x + 6y + 4 =$	0 orthogonally is		$x^{2} + y^{2} + 4x - 6y + 9 = 0$ and (4) - 8x - 12y + 13 = 0
2.23	The locus of the point ($$ (1) a pair of straight lines		(2) a circle	
2.24	 (3) a parabola The four points of interse centre is at the point 	ection of the lines (2x -	(4) an ellipse - y + 1) (x - 2y + 3) = 0	with the axes lie on a circle whos
	(1) $\left(-\frac{7}{4},\frac{5}{4}\right)$	$(2)\left(\frac{3}{4},\frac{5}{4}\right)$	$(3)\left(\frac{9}{4},\frac{5}{4}\right)$	$(4)\left(0,\frac{5}{4}\right)$
2.25				on the circle $x^2 + y^2 = 1$ and A is t
				en $\cos \frac{\alpha}{2}$, $\cos \frac{\beta}{2}$ and $\cos \frac{\gamma}{2}$ are in
2.26	The radical centre of thre	(2) G.P. ee circles, described	(3) H.P. on the three sides 3x –	(4) None of these 2y + 10 = 0, x - y + 5 = 0
	and $2x + 3y - 3 = 0$ of a (1) $\left(\frac{24}{13}, \frac{29}{13}\right)$	triangle as diameter,	is	
2.27				kes at P and Q, then locus of the
2.21	foot of the perpendicular	from O to PQ is	asis a taka a propinsi	Loop a third of the stand
	(1) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{64}{(x^2 + y^2)^2}$	Televeni 2 n Telev	(2) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{64}{x^2 + 4}$	$\overline{y^2}$
	(3) $x^2 + y^2 = \frac{16}{x^{-2} + y^{-2}}$		(4) None of these	
2.28	From the point P(2 + $3\sqrt{2}$ circle x ² + y ² - 4x - 6y +	$\overline{2}\cos\theta$, $3 + 3\sqrt{2}\sin\theta$) 4 = 0, then the angle	e between them is.	
	1 1	(2) $\frac{\pi}{3}$	(3) $\frac{\pi}{4}$	
2.29	A circle passes through t above circles is diameter	the intersection point r of that circle then e		d $x^2 + y^2 = 9$ and the common c
	above circles is diameter (1) $x^2 + y^2 - 3x - 5 = 0$ (3) $32x^2 + 32y^2 - 72x - 2$		(2) 16x ² + 16y ² - (4) None of these	36x - 207 = 0
Level	: II (Tough)			(2) Gotement 1 in True, Golar
2.30	If $A\left(a, \frac{1}{a}\right)$, $B\left(b, \frac{1}{b}\right)$, $C\left(c, \frac{1}{b}\right)$	$\left(\frac{1}{c}\right)$ and $D\left(d, \frac{1}{d}\right)$ and	e 4 distinct points on a	a unit circle then abcd equals. (4) 8
	111.0	(2) 4	(0) .	
2.31	Let x, y be the real numb and minimum value be m	per satisfying the equals		= 0 Let maximum value of x^2 . (4) 13
	(1) 8 ·	(2) 12	(3) 10	(4) 10

	50 JEE (Main) - RRB (a)	
2.	32 Two thin rods AB and CD of length 2a and 2b move along OX and OY respectively where O is the origin. The equation of locus of centre of circle passing through the extrimities of the two rods is : $(1) x^2 - y^2 = a^2 - b^2$ (2) $x^2 + y^2 = a^2 - b^2$ (3) $x^2 + y^2 = a^2 + b^2$ (4) $x^2 - y^2 = a^2 + b^2$ (1) $x^2 - y^2 = a^2 - b^2$ (2) $x^2 + y^2 = a^2 - b^2$ (3) $x^2 + y^2 = a^2 + b^2$ (4) $x - y + c \ge 0$ } contains only one 33 The value of a fear which the set $f(x, y) x^2 + y^2 + 2x - 1 \le 0$ } and $\{(x, y) x - y + c \ge 0\}$ contains only one	2.43
2.	(4) (4) (4)	
2.:	point in common is: (1) $(-\infty, -1) \cup [3, \infty]$ (2) $\{-1, 3\}$ (3) $\{-3\}$ (3) $\{-3\}$ (4) None of these (4) None of these	
	(1) $f_1g_1 = f_2g_2$ (2) $\frac{f_1}{g_1} = \frac{f_2}{g_2}$ (3) $f_1f_2 = g_1g_2$ (4) Note of these 5 Two circle whose radii are equal to 4 and 8 intersect at right angles. Length of their common chord is :	
2.3	5 Two circle whose radii are equal to 4 and 8 intersect at right angle (4) 8	
	$(1) \frac{16}{5}$ (3) $4\sqrt{6}$	2.44
2.3	$264 \pm c = 0$ tangents are drawn to the circle	
	$x^{2} + y^{2} + 2gx + 2fy + c \sin^{2}\alpha + (g^{2} + 1)\cos^{2}\alpha \tan^{2}\alpha^{2}$ (1) α (2) 2α (3) $\frac{\alpha}{2}$ (4) $\frac{\pi}{2} - \alpha$	
2 27	the same fixed point. One of them may be :	
2.37	$(1)(1 + \sqrt{2}, 1)$ $(2)(1 + \sqrt{3}, 0)$ $(3)(1 - \sqrt{3}, -1)$ (7)	
2.38	A circle whose centre lies in first quadrant passes through (3, 0) and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy of equal energy $(3, 0)$ and cut of equal energy $(3, 0)$ and $(3,$	2.4
2.39	Line $(x - 3) \cos\theta + (y - 3) \sin\theta = 1$ touches a circle $(x - 3)^2 + (y - 3)^2 = 1$, then find the number of values	
	of θ . (1) 1 (2) 2 (3) 3 (4) infinite	
SEC	TION - II : ASSERTION & REASONING TYPE	
2.40	 Statement-1: No tangent can be drawn from the point (1, 0) to the circle x² + y² - 6x + 4y - 3 = 0 Statement-2: The power of the point of the circle x² + y² + ax + by + c = 0 with respect to point (a, b) is negative then point lies inside the circle (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 	
.41	Statement-1 : Circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 8x + 7 = 0$ intersect each other at two distinct points Statement-2 : Circles with centre C ₁ and C ₂ and radii r ₁ and r ₂ intersect at two distinct points, if $ C_1C_2 < r_1 + r_2$ (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True	
r da	Statement-1 : Number of circles through $A(2, 4)$, $B(5, 6)$, $C(1, -2)$ is 1	

Statement-1: Number of circles through A(2, 4), B(5, 6), C(1, -2) is 1 **Statement-2**: Through three non collinear points in a plane only one circle can be drawn.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (4) Statement-1 is False, Statement-2 is True

Resonance®

2.

2.4

Sector Sector	so JEE (Main) - RRB ca
2.43	Statement-1 : The length of intercept made by the circle $x^2 + y^2 - 3x + 4y = 0$ on y-axis is 4.
	Statement-2 : The length of y intercept of the circle.
	$x^{2} + y^{2} + 2gx + 2fy + c = 0$ is $2\sqrt{g^{2} - c}$.
	(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
	(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
	(3) Statement-1 is True, Statement-2 is False
	(4) Statement-1 is False, Statement-2 is True
2.44	Statement-1 : Three circles with non-collinear centres have exactly one circle cutting all the 3 circles
	orthogonally.
	Statement-2 : Radical axis of intersecting circles is their common chord.
	(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
	(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
	(3) Statement-1 is True, Statement-2 is False
	(4) Statement-1 is False, Statement-2 is True
2.45	Statement-1 : If L = 0 is tangent to circle S = 0, true will be tangent to circle S + λ L = 0
	Statement-2 : Perpendicular distance from centre of a circle to any its tangent is equal to radius of the
	circle.
	(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
	(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
	(3) Statement-1 is True, Statement-2 is False
	(4) Statement-1 is False, Statement-2 is True

1

	TOPIC	the first and a stand of the	Andreas Print Indens of the	The second second
	3		PARABOL	-A
	Easy/	TRAIGHT OBJECTIVE Moderate)		
	3.1 A tangent to	the parabola $v^2 + 4bx = 0$ me	ets the parabola $y^2 = 4ax$ at	P and Q then the locus of middle point $4a^2x$ (4) $y^2(a + 2b) = 4b^2x$
	3.2 The normals respectively	sat P O the ends of a feedle	$= 4b^2x$ (3) $y^2 (2a + b)^2$ chord of a parabola $y^2 = 4a$	x meets the parabola again in P' & Q'
	(1) PQ	(2) 2PQ	(3) $\frac{1}{2}$ PQ	(4) 3PQ
3.	.3 If b and c are semi latus re	e the lengths of the segments	· · · · · · · · · · · · · · · · · · ·	trabola $y^2 = 4ax$, then the length of the
	$(1) \ \frac{b+c}{2}$	(2) $\frac{bc}{b+c}$	(3) $\frac{2bc}{b+c}$	(4) √bc
3.4	I If the parabol (1) 3	a x ² = ay makes an intercep (2) –2	t of length $\sqrt{40}$ on the lin (3) -1	e y – 2x = 1, then a = (4) 2
3.5	The values of		+ 1) will be an interior poin	t of the smaller region bounded by the
				$(4) \ (-5 - 2\sqrt{6} \ , \ -5 + 2\sqrt{6} \)$
8.6	The equation (1) $y^2 = -8(x + x)$	of the paraböla whose ver + 3) (2) $y^2 = 8(x + 3)$	tex is (-3, 0) and directr (3) $x^2 = -8(y + 3)$	ix is $x + 5 = 0$ (4) $x^2 = 8(y + 3)$
3.7		focal chord of parabola y	² = 8x which is parendic	ular to line $x + y = 1$
	(1) 4 √2	(2) 8 √2	(3) 4	(4) 8
8	(1) 30	n the pair of tangents to y ² (2) 45°	(3) 60°	(4) 90°
9	If line $y = 2x +$ (1) $c = -12$, $t =$ (3) $c = 12$, $t = 2$		oola y ² = 4x at the point (2) c = 12, t = -2 (4) c = -12, t = 2	
10	A ray of light m $y^2 = 4(x - 1)$. At (1) (2, 0)	oving parallel to the x-ax fter reflection the ray pass (2) (1, 0)	is acts reflected from a	parabolic mirror whose equation is
1	The double ordi parabola is -	nate of parabola y ² = 8kx	is of length 16k. The a	(4) (-1, 0) ngle subtended by it at the vertex of
	(1) 45°	(2) 60°	(3) 90°	(4) data insufficent
	The equation of origin respective	the parabola whose vert	ex & focus lie on the a	xis of x at distance d ₁ & d ₂ from the
	(1) $y^2 = 4(d_2 - d_3)$	$(x - d_2)$	(2) $y^2 = 4(d_2 - d_1)$ (4) $y^2 = 4(d_2 - d_1)$	

3.13	If end points t_1 , t_2 of a parabola is $y^2 = 4x$ (1) (1, 0)	a chord satisfy the relat (2) (–1, 0)	tion $t_1 t_2 = 1$ then chore (3) (2, 0)	d always passes through the point if (4) (–2, 0)
3.14		tangents of the parabo	The state of the second burners and	
3.15	of point P is		the axis of $y^2 = 4x$ from (3) $y = (x - 1)$	n point P & if $Q_1 + Q_2 = 45^\circ$ then locus (4) y = (x + 1)
3.16	If $y = x + 1$ intersect	the $x^2 = y$ at A & B the	n point of intersectio	n of tangents at A & B is
	(1) (-2, 4)	(2) (-2, -4)	(3) (2, 4)	$(4)\left(\frac{1}{2},1\right)$
3.17	Locus of middle poin (1) $(y + 1)^2 = (x + 1)$	t of the chord of the pa (2) $(y - 1)^2 = (2x - 1)^2$	arabola $y^2 = 4x$ which 1) (3) $(y + 1)^2 = (x + 1)^2$	passes through a point (1, 2) - 1) (4) (y - 1)² = (x + 1)
3.18		chord of parabola x ² = (2) x = 4		(4) = 0
3.19		parabola y ² = 8x with ve ion of BC on the axis c (2) 8		n perpendicular to AB meeting the axi
3 20		• •		a $y^2 = 4x$ to its directrix & SPM is a
3.20		e perpendicular from /here S is the focus, th (2) 2		(4) 4
3.21	Number of distinct n	ormals that can be dra	awn from $\left(\frac{11}{4}, \frac{1}{4}\right)$ to	the parabola y² = 4x is
	(1) 1	(2) 2	(3) 3	(4) 4
3.22	(1) ℓn = am ²	is tangent to parabol (2) ℓm = an²	(3) ℓn = am	(4) ℓm = an
3.23	Length of focal chor	d of the parabola $y^2 = -$		rom the vertex is
	(1) $\frac{2a^2}{P}$	(2) $\frac{a^3}{P^2}$	(3) $\frac{4a^3}{P^2}$	$(4) \frac{P^2}{a}$
3.24	not correct about tai (1) Are perpendicula (3) intersect at verte	ngents at P and Q r x	(2) intersect or (4) $t_1 t_2 = -1$	
3.25	A circle with centre a	t the focus of the para	ibola y ² = 4ax touche	es the directrix then point of intersed
	of the circle and para	abola is (2) (a, 3a)	(3) (a, 2a)	(4) (0, a)
3.26	$(1) x^{2}y + 2 = 0$	nord of parabola $y^2 = 4$ (2) xy = 2	4x is (1, 2) then othe (3) xy = - 2	er end does not lie on (4) $x^2 + xy - y - 1 = 0$
3.27	$y^2 = 4ax$ be a parabo	bla & $x^2 + y^2 + 2bx = 0$ (2) a > 0, b < 0	(0) 4 0, 0	each other externally then : 0 (4) a < 0, b = 0
2 20	is the normal drawn	from any point to the	parabola y² = 4ax m	akes angle α & β with the axis suc
3.28	$\tan \alpha . \tan \beta = 2$ then	locus of this point is	(3) parabola	(4) hyperbola
3.29	A tangent to the para	bola $x^2 + 4ay = 0$ cuts	the parabola x² = 4 . b²y (3) (a + 2b) y	by at A and B then locus of the mic $a^{2} = 4 b^{2}x$ (4) (b + 2x) $x^{2} = 4 a^{2}y$
	(1) $(a + 2b) x^2 = 4 b^2$	y (2) (0 ·) ···	an alexandress	
A	Resonance [®]			

CR

int

Q'

e

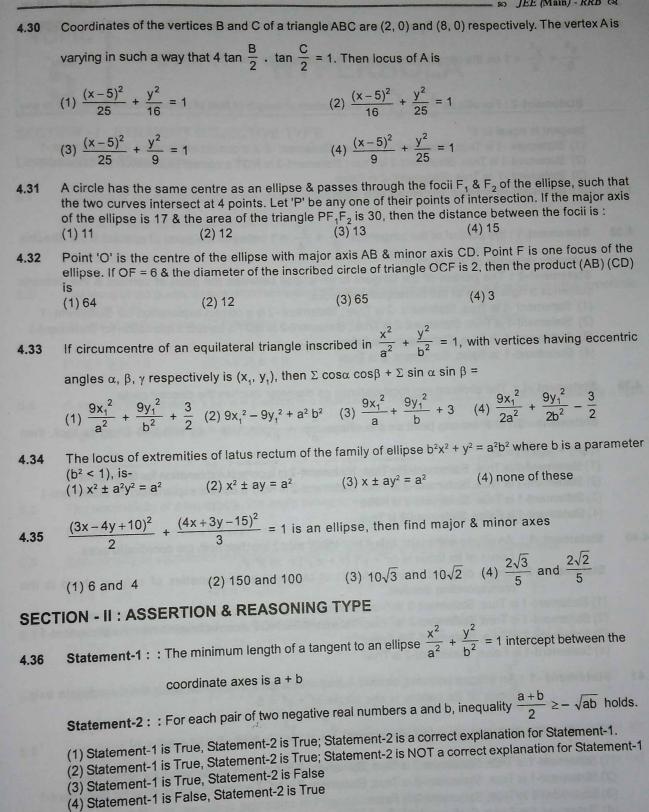
e

	50 JEE (Main) - RRB CR	
Lev	vel : II (Tough)	SECTI
3.30	A parabola $y = ax^2 + bx + c$ crosses the x-axis at (α 0) (β 0) both to the right of attack to the circle is:	3.40
	(1) $\sqrt{\frac{bc}{a}}$ (2) ac^2 (3) $\frac{b}{a}$ (4) \sqrt{a}	
	$x_{1} = parabola y^{2} - 2y - 2x - 1 = 0$ is	
3.31	Number of normals drawn from the point $(-2, 2)$ to the parabola $y^2 - 2y - 2x - 1 = 0$ is (1) one (2) two (3) three	3.41
3.32	The directrix of the parabola $25[x^2 + y^2 - 2y + 1] = (3x + 4y + 1)^2$ is (1) $3x + 4y + 1 = 0$ (2) $3x - 4y + 1 = 0$ (3) $4x + 3y + 1 = 0$ (4) $3x + 4y + 3 = 0$	
3.33	If chord of parabola $y^2 = 4x$ subtend an angle of 90° at origin then it always passed in each point (1) (4, 0) (2) (0, 4) (3) (2, 0) (4) (1, 0)	3.42
.34	Equation of common tangent to $x^2 + y^2 = 4$ and $y^2 = 4x$ having (-)ve slope	
	(1) $y = -\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right)x + \sqrt{\frac{\sqrt{2}-1}{2}}$ (2) $y = -\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right)x - \sqrt{\frac{2}{\sqrt{2}-1}}$	
	(3) $y = -(\sqrt{2} - 1)x + (\frac{1}{\sqrt{2} - 1})$ (4) $y = -(\sqrt{2} - 1)x - (\frac{1}{\sqrt{2} - 1})$	3.43
35	Locus of the point from where 3 normals are drawn to the parabola $y^2 = 4x$ such that two of them are perpendicular is	
	(1) $y^2 = (x - 1)$ (2) $y^2 = (x - 3)$ (3) $y^2 = (x + 3)$ (4) $y^2 = (x + 1)$	
36	Two chords are drawn through a fixed point 't' on the parabola $y^2 = 4x$ at right angles. The chord joining there other extremities passes through a fixed point	
	(1) $[t^2 + 4, 2t]$ (2) $[t^2 + 4, -2t]$ (3) $[t^2 - 4, 2t]$ (4) $[t^2 - 4, -2t]$	3.
7	If two normals to a parabola $y^2 = 4ax$ intersect at right angles then the chord joining their feet passes through a fixed point whose co-ordinates are:	
	(1) (-2a, 0) (2) (a, 0) (3) (2a, 0) (4) none	
B	The equation of the other normal to the parabola $y^2 = 4ax$ which passes through the point of intersection of normals at (4a, -4a) & (9a, -6a) is:	
((1) $5x - y + 115a = 0$ (2) $5x + y - 135a = 0$	
((3) $5x - y - 115a = 0$ (4) $5x + y + 115 = 0$	
1	The co-ordinate of the vertex of parabola $y = x^2 + bx + c$ is (1, 2) then find value of b.	
(1) -1 (2) -2 (3) 1 (4) 2	

Resonance®

3

3.


3 08 80 JEE (Main) - RRB CR **SECTION - II : ASSERTION & REASONING TYPE** Iso Statement-1 : Curve $9y^2 - 6y = 2x + 1$ is symmetric about $y = \frac{1}{3}$ 3.40 Statement-2 : A parabola is symmetric about it's axis. (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1. (2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1 (3) Statement-1 is false, Statement-2 is true. (4) Statement-1 is true, Statement-2 is false. Statement-1 : Two perpendicular tangent on y² = -4x is always meet on x = 1 3.41 Statement-2 : Two perpendicular tangents always meet on axis of parabola. (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1. (2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1 (3) Statement-1 is false, Statement-2 is true. (4) Statement-1 is true, Statement-2 is false. Statement-1 : AB is a focal chord of a parabola then the tangent at A to the parabola is parallel to the 3.42 normal at B. Statement-2 : If A(t₁) & B(t₂) are the ends of a focal chord of the parabola $y^2 = 4ax$ then $t_1t_2 = -1$ (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1. (2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1 (3) Statement-1 is false, Statement-2 is true. (4) Statement-1 is true, Statement-2 is false. Statement-1: The perpendicular bisector of the line segment joining the point (-a, 2at) and (a, 0) is 3.43 tangent to the parabola $y^2 = 4ax$, where $t \in R$ Statement-2: Number of parabolas with a given point as vertex and length of latus rectum equal to 4, is 2 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1 : Normal chord drawn at the point (8, 8) of the parabola $y^2 = 8x$ subtends a right angle at the 3.44 vertex of the parabola. Statement-2: Every chord of the parabola y² = 4ax passing through the point (4a, 0) subtends a right angle at the vertex of the parabola. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Let $y^2 = 4ax$ be the parabola Statement-1 : Circle circumscribing conormal points of a parabola passes through its vertex. 3.45 **Statement-2** : If t_1 , t_2 , t_3 are feet of conormal points of the parabola, then $t_1 + t_2 + t_3 = 0$ (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True

FOPIC		Sans Standard	La ser of the second	
TOPIC 4		ELLIPSE	And A Symmetry	4.8
SECTION - I : ST	RAIGHT OBJECTIVE T	YPE	5 m 1 10	
Level : L (East (B			ect it again at the point $Q(3\theta)$ and if	4.
$\cos 2\theta = \frac{a}{b} w$ (1) 5	here a, b are coprime, then a	a – b = (3) 23	(4) –23	
	(2) - 5 n of the ellipse x ² tan ² α + y ²		$< \alpha < \pi$) is equal to :-	4
(1) $\frac{\pi}{12}$		(3) $\frac{7\pi}{12}$		4
4.3 If 0 is the angle	e between the diameter throu	igh any point on the ellips	$\frac{x^2}{64} + \frac{y^2}{49} = 1$ and the normal at that	t
	greatest value of tan θ is :- (2) $\frac{15}{112}$	(3) $\frac{15}{56}$		
4.4 Find equation	of ellipse having focus (-1	, 1) & directrix y = 3 & e	eccentricity is $\frac{1}{2}$	
(1) $4x^2 + 3y^2 +$ (3) $3x^2 + 4y^2 +$	8x - 2y + 1 = 0 8x - 2y + 1 = 0	(2) $4x^2 + 3y^2 + 8x$ (4) $3x^2 + 4y^2 + 8x$	-2y - 1 = 0 -2y - 1 = 0	
4.5 Equation of ell (2, 0) & $\left(1, \frac{\sqrt{3}}{2}\right)$		n, axes are the axes o	f co-ordinate and passing throug	h
(1) $4x^2 + y^2 = 4$	(2) $x^2 - 4y^2 = 4$			
	ellipse subtend a right ang 1	le at its focus then ecc	entricity of ellipse is	
(1) $\frac{1}{\sqrt{2}}$	(2) $\frac{1}{\sqrt{3}}$	(3) $\sqrt{2}$	(4) $\sqrt{3}$	
			20° if ellipse is $\frac{x^2}{9} + \frac{y^2}{16} = 1$	
$(1) \tan^{-1}\left(\frac{48\sqrt{3}}{19}\right)$	$(2) \tan^{-1}\left(\frac{12\sqrt{3}}{19}\right)$	$(3) \tan^{-1}\left(\frac{24\sqrt{3}}{19}\right)$	$(4) \tan^{-1}\left(\frac{6\sqrt{3}}{19}\right)$	
Resonance	_ ®			

4.20	The equation of chord of ellipse $2x^2 + 5y^2 = 20$ which is bisected at the point (2, 1) is (1) $4x + 5y + 13 = 0$ (2) $4x + 5y = 13$ (3) $5x + 4y = 13$ (4) $5x + 4y + 13 = 0$ (5) $5x + 4y + 13 = 0$ (2) $4x + 5y = 13$ (3) $5x + 4y = 13$
	(1) $4x + 5y + 13 = 0$ (2) $4x + 5y = 13$ (3) $5x + 4y$ (3) $5x + 4y$ (3) $5x + 4y$ (3) $5x + 4y$ (3) $5x + 4y$ The normal drawn to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the extremity of the latus rectum passes through the extremity of the minor axis. Eccentricity of this ellipse is equal to $\sqrt{5} - 1$
4.21	The normal drawn to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the extremely a size equal to
	(1) $\sqrt{\frac{\sqrt{5}-1}{2}}$ (2) $\sqrt{\frac{\sqrt{3}-1}{2}}$ (3) $\frac{\sqrt{3}-1}{2}$ (4) $\frac{\sqrt{2}}{2}$
4.22	The equation $\frac{x^2}{2-r} + \frac{y^2}{r-5} + 1 = 0$ represent the ellipse if (4) $r \in (2, 5)$
	$\begin{array}{c} 2-r & r-5 \\ (1) r > 2 \\ (2) 2 < r < 5 \\ (3) r > 5 \end{array}$
4.23	The curve $x = 3$ (cos t + sin t) $y = 4(cos t - sin t)$ represents (1) ellipse (2) parabola (3) hyperbola (4) circle
4.24	Let P be the variable point on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ with focii at S & S'. Then maximum area of
	APSS' (A) 48
	(1) 24 (2) 12 (3) 36
4.25	If $y = x + 1$ is a polar to $x^2 + 2y^2 = 1$ then pole is (11)
	(1) $\left(-1,\frac{1}{2}\right)$ (2) $(-1,1)$ (3) $\left(-\frac{1}{2},1\right)$ (4) $\left(-\frac{1}{2},\frac{1}{2}\right)$
4.26	The equation $\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 4$ represents
	(1) line segment (2) parabola (3) ellipse (4) hyperbola
_eve	I : II (Tough)
1.27	The locus of the point of intersection of tangents to an ellipse at two points whose eccentric angle differ
	2 <u>y²</u>
	by a constant α is $\frac{x^2}{\lambda \sec^2\left(\frac{\alpha}{2}\right)} + \frac{y}{\mu \sec^2\left(\frac{\alpha}{2}\right)} = 1$ then $\lambda + \mu$
	(1) $a^2 + b^2$ (2) $a + b$ (3) $a^2 - b^2$ (4) $a \times b$
.28	The locus of foot of perpendicular drawn from centre to any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
	(1) $(x^2 + y^2)^2 = a^2x^2 - b^2y^2$ (2) $(x^2 + y^2)^2 = a^2x^2 + b^2y^2$
	(3) $(x^2 + y^2) = a^2x^2 + b^2y^2$ (4) $(x^2 - y^2)^2 = a^2x^2 + b^2y^2$
.29	The condition on 'a' and 'b' for which two distinct chords of the ellipse $\frac{x^2}{2a^2} + \frac{y^2}{2b^2} = 1$ passing through
	(1) $a^2 < 7b^2 - 6ab$ (2) $a^2 > 7b^2 + 6ab$ (3) $a^2 > 7b^2 - 6ab$ (4) $a^2 < 7b^2 + 6ab$

80 JEE (Main) - RRB CR

18

Purchase a license to generate PDF files without this notice.

sonan

so JEE (Main) - RRB (a 4.37 Statement-1 : If F_1 and F_2 are the feet of the perpendiculars from foci $S_1 \& S_2$ of an ellipse $\frac{x^2}{5} + \frac{y^2}{3} = 1$ on the tangent at any point P on the ellipse then $(S_1F_1).(S_2F_2) = 3$ TO Statement-2: For ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ the product of length of feet of perpendicular from focil to any (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1
 (2) Statement 4 is True, Statement -2 is True; Statement -2 is NOT a correct explanation for Statement -1 (2) Statement -1 is True, Statement -2 is True; Statement -2 is NOT a correct explanation for Statement-1
 (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 SECT Level (3) Statement -1 is True, Statement -2 is False (4) Statement -1 is False, Statement -2 is True 5.1 Statement-1 : the portion of the tangent to $\frac{x^2}{9} + \frac{y^2}{4} = 1$ between the point of contact & the directrix 4.38 Statement-2 : The portion of the tangent to an ellipse between the point of contact & the directrix subtends a right angle at the corresponding focus. (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1 5.2 (2) Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement -1 is True, Statement -2 is False 5.3 (4) Statement -1 is False, Statement -2 is True Statement -1 : The circle on any focal distance as diameter touches the director circle. 4.39 Statement - 2 : If P be any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a < b) with S & S' as its focii, then 5.4 $\ell(SP) + \ell(S'P) = 2b.$ (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False 5.5 (4) Statement-1 is False, Statement-2 is True Statement -1 : An ellipse with major axis 4 and minor axis 2 touches both the coordinate axes. 4.40 5.6 Locus of its focus is $(x^2 + y^2) (1 + x^2y^2) = 16 x^2 y^2$. Statement - 2 : Locus of point of intersection of tangents at extremeties of a focal chord is the corresponding directrix. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 5.7 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement -1 : An ellipse with major axis 4 and minor axis 2 touches both the coordinate axis. 5.8 4.41 Locus of its centre is the circle $x^2 + y^2 = 5$ Statement-2 : Director circle of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $x^2 + y^2 = a^2 + b^2$. 5.9 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False 5.10 (4) Statement-1 is False, Statement-2 is True 5.1

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

Resonance

T	OPIC	AND IN COMPANY		\$5 JEE (Main) - RRB 62
	5	HYF	PERBOLA	A
SEC	TION - I : STRAIGHT	OBJECTIVE TYPE		
Leve	el : I (Easy/Moderate)			in the law of the second second second
5.1	The locus of the middle p	oints of the chords of the	hyperbola $\frac{x^2}{2} - \frac{y^2}{12} = 1$	1, which pass through a fixed point
	(α, β) is a hyperbola where		a² b²	Part of Standard Parts
	(1) (2α, 2β)		(3) (3α, 3β)	$(4)\left(\frac{\alpha}{2},\frac{\beta}{2}\right)$
5.2	The locus of the points w	hose chord of contact w	ith respect to the parabo	ola $y^2 = 4ax$ touches the hyperbola
	$x^2 - y^2 = a^2$ is :- (1) Pair of straight lines	(2) Parabola	(3) Circle	(4) Ellipse
5.3	If a line $ax + by + c = 0$ (1) $a > 0, b > 0$		bola xy = 1 then (3) a < 0, b < 0	(4) a + b = 0
5.4	A variable line x cosq +	$v \sin \alpha = p$ which is a cl	hord of the hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (b > a) subtends a right
0.4	angle at the centre of th			
	(1) $\frac{d2}{\sqrt{a^2 + b^2}}$	(2) $\frac{ab}{\sqrt{b^2 - a^2}}$	$(3) \overline{\sqrt{a^2 - b^2}}$	$(4) \frac{ab}{2\sqrt{b^2 - a^2}}$
5.5	The eccentricity of a hyperbolic structure o	perbola, the angle betw	een whose asymptotes	s is 30°, is
	(1) √6	(2) $\sqrt{2}$	(3) $\sqrt{6} - \sqrt{2}$	(4) $\sqrt{3}$
5.6	Eccentricity of stander	ed hyperbola whose la	atus ractum is half of	its transverse axis
	(1) $e = \sqrt{3}$		(3) $e = \sqrt{2}$	$(4) e = \sqrt{\frac{3}{2}}$
5.7	Equation of hyperbola (1) $3y^2 - x^2 = 27$	whose foci are $(6, 0)$ (2) $3x^2 - y^2 = 27$	& (-6, 0) and eccen (3) $x^2 - 3y^2 = 27$	tricity = 2 (4) $x^2 - 3y^2 = 9$
		to non your each of	the state alling	$x^2 + \frac{y^2}{2} = 1 \& e = 2$
5.8	Equation of hyperbola	if its foci coicide with	the foci of the ellips	$\frac{x^2}{25} + \frac{y^2}{9} = 1 \& e = 2$ (4) $3y^2 - x^2 = 12$
	(1) $x^2 - 3y^2 = 12$	(2) $2x^2 - 3y^2 = 12$	(3) $3x^2 - y^2 = 12$	(4) $3y^2 - x^2 = 12$
5.9	Which of the followin	g pair may represer	nt the eccentricities	of two conjugate hyperbola for all (4) 4 + cip α 1 + cos (α)
	$\alpha \in (0^\circ, 90^\circ)$	(2) tan α , cot α	(3) sec α, cosec	α (4) 1 + Sin α , 1 + 605 (α)
- 10	IF DI To tan A To sec	$[0, 0]$ is any point in I^{st}	quadrent at distance	$\sqrt{6}$ from origin then θ = (4) 90°
5.10	(1) 30°	(2) 45	0.2	4x - 6y = 0 parallel to y = 2x is
5.11	The locus of the midd $(1) 3x - 4y = 4$	(2) $3y - 4x + 4 = 0$	(3) $4x - 3y = 3$	(4) $3x - 4y = 2$
				20
	Deconance			
$ \land $	Educating for better tomorrow			

E 4-			$25y^2 = 400$ include	de an angle between them is equal
5.12		m (1, 2 $\sqrt{2}$) to the hyperb	(3) 60°	de an angle between them is equ _{al} (4) 90°
5.13	(1) 30° The co-ordinate	(2) 45° of focus of $9x^2 - 16y^2 +$ (2) (6 1)	10x + 32y - 151 = 0	(4) (4, -1)
	(1) (-6, 1)	(2) (6, 1)	(3) (-4, 1)	the hyperbola $\frac{x^2}{2} - \frac{y^2}{2}$
5.14	If the chord of co	ontact of tangents from	two points $(x_1, y_1) \& (x_2, y_1)$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
	are at right angle	~ ~		a subtant of the made of
		- 1- 2	(3) -b ⁴ /a ⁴	$(4) -a^4/b^4$
5.15	If e & e' are the e (1) -1	eccentricities of the ellip (2) 1	se $5x^2 + 9y^2 = 45$ & hyper	bola $5x^2 - 4y^2 = 45$ then ee' = ? (4) 9
5.16	If the length of t	the transverse ? conjur	gate axes of a hyperbola of the hyperbola will be	a be 8 & 6 respectively then the (4) 2
	(1) 8	(2) 6	(3) 14	The second provide the second strength of the
5.17	If m is a variable,	then locus of the point	of intersection of the line	s $\frac{x}{3} - \frac{y}{2} = m \& \frac{x}{3} + \frac{y}{2} = \frac{1}{m}$ is (4) none
	(1) parabola	(2) ellipse	(3) hyperbola	
5.18	The equation ax^2 (1) $\Delta \neq 0$, $h^2 > ab$, (3) $\Delta \neq 0$, $h^2 = ab$,	, a + b = 0	y + c = 0 represents a rea (2) ∆ ≠ 0, h² < ab, a (4) none	ctangular hyperbola if a + b = 0
5.19	If e & e' be the ec (1) ellipse)² = 3 then both S & S' are (4) none
5.20	The equation of no (1) ax sec θ + by θ (3) ax cos θ + by θ	ormal at (a sec θ_1 , b tar cosec $\theta = a^2 + b^2$ cot $\theta = a^2 + b^2$	(2) of the curve $b^2x^2 - a^2$ (2) ax cot θ + by co (4) ax cos θ + by c	$by^2 = a^2b^2$ is $bs \theta = a^2 + b^2$ $ot \theta = a^2 - b^2$
			pint P to the hyperbola -	$\frac{x^2}{9} - \frac{y^2}{4} = 1$ if equation of QR is
	4x - 3y - 6 = 0 the (1) (2, 6)		(3) (6, 2)	(4) none
22 /	A tangent to a $\frac{x^2}{2}$	$-\frac{y^2}{2} = 1$ intercepts a	length of unity from and	n of the co-ordinate axes then the
	a ²	b ²	iongai of unity from each	n of the co-ordinate axes then the
(point (a, b) lies on 1) $x^2 - y^2 = 2$	(2) $x^2 - y^2 = 1$	(3) $x^2 - y^2 = -1$	(4) none
	he area of quadrila	ateral formed by focii c	of hyperbola $\frac{x^2}{y^2} = \frac{y^2}{y^2}$	1 & its conjugate hyperbola is
2 3 T	1) 14	(2) 24	(3) 12	
2 3 T		(-)	(3) 12	(4) 10
(.		the second second second		
4 If	the focii of the elli	pse $\frac{x^2}{k^2 a^2} + \frac{y^2}{a^2} = 1$ and	nd hyperbola $\frac{x^2}{a^2} - \frac{y^2}{a^2}$	= 1 coincides then $k = 2$
4 lf	the focii of the elli	pse $\frac{x^2}{k^2 a^2} + \frac{y^2}{a^2} = 1$ at (2) $\pm \sqrt{2}$	nd hyperbola $\frac{x^2}{a^2} - \frac{y^2}{a^2}$ (3) $\sqrt{3}$	= 1 coincides then k = ? (4) $\sqrt{2}$
4 lf	the focii of the elli	pse $\frac{x^2}{k^2 a^2} + \frac{y^2}{a^2} = 1$ at (2) $\pm \sqrt{2}$	nd hyperbola $\frac{x^2}{a^2} - \frac{y^2}{a^2}$ (3) $\sqrt{3}$	= 1 coincides then k = ? (4) $\sqrt{2}$

5.25				the farther vertex of the conic. If
	(1) √3	(2) $\sqrt{3} + 1$	(3) $(\sqrt{3} + 1)/\sqrt{2}$	(4) ($\sqrt{3}$ + 1)/ $\sqrt{3}$
5.26	The tangent at point	(2 sec θ , 3 tan θ) of the	$\frac{x^2}{4} - \frac{y^2}{9} = 1$ is paralle	l to 3x – y + 4 = 0 then the value
	of θ is (1) 30°		(3) 60°	
Lev	el : II (Tough)			
5.27	The points of interset y = 2/s is given by : (1) (4, 1)			s are $x = t^2 + 1$, $y = 2t$ and $x = 2s$,
	(')(', ')	(2) (2, 2)	(3) (-2, 2)	(4) (1, 0)
5.28	From any point on the	$\text{hyperbola H}_1: \frac{x^2}{a^2} - \frac{y^2}{b^2}$	= 1 tangents are drawn to	the hyperbola $H_2: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$. The
	area cut-off by the cl (1) ab	hord of contact on the (2) 2ab	asymptotes of H ₂ is equ (3) 4 ab	al to: (4) 8 ab
5.29	The equations of the	e transverse and conj	ugate axes of a hyperbo	la are respectively $x + 2y - 3 = 0$
	2x - y + 4 = 0, and the	neir respective lengths	s are $\sqrt{2}$ and $2/\sqrt{3}$. The	equation of the hyperbola is
	5	5	$(2)\frac{2}{5}(2x-y+4)^2$	0
			$(4) \ 2(x + 2y - 3)^2 -$	
5.30	The chord PQ of the is the origin. Then th (1) equilateral	e ∆ ACO is :		s at A; C is the mid point of PQ & 'o (4) right isosceles.
5.31	If AB is a double ordir	hate of the hyperbola -	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ such that ΔC	OAB (O is the origin) is an equilate
	triangle, then the eco	centricity 'e' of the hy	perbola satisfies	
	(1) e > √3	(2) $1 < e < 2\frac{2}{\sqrt{3}}$	(3) $e = \frac{2}{\sqrt{3}}$	(4) e > $\frac{2}{\sqrt{3}}$
			x ²	2
5.32	If x cos α + y sin α =	p, a variable chord c	of the hyperbola $\frac{x}{a^2} - \frac{y}{2a}$	$\frac{2}{a^2} = 1$ subtends a right angle at
	centre of the hyperbo	pla, then the chords t	ouch a fixed circle who	se radius is equal to
	(1) √2 a	(2) √3 a	(3) 2 a	(4) √5 a
5.33	Consider the point P	(4, 3) and $\frac{x^2}{16} - \frac{y^2}{9}$	= 1. Which of the follo	wing is not true ?
	(1) Two tangents can (3) P lies on out side	be drawn from P the hyperbola	(4) P lines on As	ymptotes on Hyperbola
5.34	The hyperbola $\frac{x^2}{16}$ -	$\frac{y^2}{9} = 1$ and point P	(4, 3), then find numbe	r of tangents from P.
	(1) 0	(2) 1	(3) 2	(4) 3

JEE (Main) - RRB Statement-1 : The conic $16x^2 - 3y^2 - 32x + 12y - 4y = 0$ represent a hyperbola SECTION - II : ASSERTION & REASONING TYPE TOPIC Statement-2: If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a hyperbola then $\Delta \neq 0$ and $h^2 - ah > 0$ 5.35 (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1
(2) Statement -1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(3) Statement-2 is True; Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 SECTION Level: I ((3) Statement -1 is True, Statement -2 is False 6.1 Co (4) Statement -1 is False, Statement -2 is True **Statement-1** : The latus rectum of the hyperbola $x^2 - y^2 = a^2$ is equal to the length of its major axis (1) (2) 5.36 (3) Statement-2 : The semi latus rectum of ellipse $b^2x^2 + a^2y^2 = a^2b^2$ is equal to $\frac{b^2}{a}$ WI (1) 6.2 Le (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1 (1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 6.3 N () () (3) Statement -1 is True, Statement -2 is False 6.4 (4) Statement -1 is False, Statement -2 is True Normal is drawn to the hyperbola $xy = c^2$ at point P (t₁) meets the hyperbola again at Q (t₂). 5.37 6.5 Statement-1 : Square of distance between P and Q is $c^2 (t_1 - t_2)^2 \left(1 + \frac{1}{t_1^2 t_2^2}\right)$. 6.6 Statement-2 : $t_1^{3}t_2 = -1$. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. 6.7 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 6.8 6.9 6.10 6.11

6.1

	6 SET 8	& RELAT	ION	
SEC	TION - I : STRAIGHT OBJECTIVE TYPE	10-AU(8-AU	01 10-A) n (B-A) (I)	
	el : I (Easy/Moderate)	TARX NED DO		
6.1	Consider the following relations : (1) $A - B = A - (A \cap B)$ (2) $A = (A \cap B) \cup (A - B)$			
	(3) $A - (A \cup C) = (A - B) \cup (A - C)$, where A, B Which of these is correct ? (1) 1 and 3 (2) 2 only	B,C are sets. (3) 2 and 3	(4) 1 and 2	
6.2	Let U be the universal set and $A \cup B \cup C = U$.	J. Then {(A – B) ∪ (B – (3) A ∩ B ∩ C	$-C) \cup (C - A)$ ' is equal to	
6.3	Which of the following is a function from A to B (1) {(1, a), (2, c), (1, d), (5, b)} (3) {(1, d), (2, b), (5, c)}	B (where A = {1, 2, 5} a (2) {(1, a), (2, c)} (4) none of these	and B = {a, b, c, d})	
6.4	Let a relation R on the set N of natural number all x, $y \in N$. The relation R is - (1) reflexive (2) symmetric		R if and only if $x^2 - 4xy + 3y^2 = 0$ (4) an equivalance relation	
6.5	R is relation defined on R × R by (a, b) R (c, d) (1) an identity relation (3) an equivalence relation		and b = d. The relation R is -	
6.6	Let R be a relation from N to N defined by R = {(a, b) : a, b \in N and a = b ² } then the state (1) (a, b) \in R \forall a \in N (2) R is symmetric	ement which is not true (3) R is transitive	e is (4) all of these	
6.7	The set {0, 2, 6, 12, 20} in the set-builder form (1) {x : $x = n^2 - 3n + 2$, where n is a natural nu (2) {x : $x = n^2 - 3n + 2$, where 'n' is a natural n (3) {x : $x = n^2 - 3n + 4$, where 'n' is a natural n (4) {x : $x = n^2 + 5n - 6$, where n is a natural nu	umber & $1 \le n \le 5$ number & $1 \le n \le 6$ number & $1 \le n \le 5$		
5.8	For the set A = {a, b, c, d, e} the correct states (1) {a, b} \in A (2) {a} \in A	ment is (3) a ∈ A	(4) a ∉ A	
5.9	If $A = \{x : x \text{ is an integer}, x^2 \le 1\}$, then the elem (1) {0, 1} (2) {-1, 0, 1}	(0) (1, 0)	(4) none of these	
.10	The solution set of the equation $x^3 - 3x + 2 = 0$ (1) {1, -2} (2) {1, 2}	0 in roster form is (3) {1, 2, 3}	(4) {- 1, 2}	
.11	The set equivalent to the set $\{1, 2, 3, 4, 5, 6\}$ i (1) $\{1, 2, 4, 5, 6\}$ (2) $\{3, 4, 1, 5, 2, 6\}$ (3) $\{x : x = n, where n is natural number and number$	n ≤ 7}		
12	The number of proper subsets of the set $\{1, 2, (1), 8, (2), 7, (2), 7, (2), 7, (2), 7, (2), 7, (2), 7, (3), (2), (3), (3), (3), (3), (3), (3), (3), (3$	2, 3} is (3) 6	(4) 5	

Resonance Educating for better tomorrow

08

and

1

s

				so JEE (Main) - RRB R	
-			-1 +0	(4) B ^c	Manufacture and the performance and places
6.13	If A and B are two giver (1) A	sets, then $A \cup (A \cap B)$ is (2) B	(3) A ^c		6.30 Let
6.14	If A and B are two sets (1) $A \cup B$	(2) B then $(A - B) \cup (B - A) \cup$ (2) $A \cap B$	$(A \cap B)$ is equal to (3) A	(4) B'	6.31 Le
6.15	If A, B and C are any th (1) $(A - B) \cap (A - C)$	than A - (B O C	(3) $(A - B) \cup C$	(4) $(A - B) \cap C$ is $(\overline{A} \text{ means complement of } A)$	(1
6.16	If A = {x : x is a multiple	of 3} and B = {x : x is a n	$(2) \overline{A} \cap \overline{B}$	is $(\overline{A} \text{ means complement of } A)$ (4) $\overline{A \cap B}$	6.32 L (
6.17	Let $A = \{1, 2, 3, 4, 5\}$:	$(2) \land \cap B$ 3 = {2, 3, 6, 7}. Then the	number of elements in ($(A \times B) \cap (B \times A)$ is (4) 0	(
5.18	Let $A = \{1, 2, 3\}$ The tot	al number of distinct rela	tions that can be defined	(4) None of these	6.33
5.19	Let A = {1, 2, 3}, B = {1	(2) 6 I, 3, 5}. A relation R : A -	\rightarrow B is defined by R = {	(1, 3), (1, 3), (2, 7), (1, 1)	
	(1) { $(1, 2)$, $(3, 1)$, $(1, 3)$, (1, 5)}	(2) {(1, 2), (3, 1), (2, 1) (4) None of these	<i>)</i>]	SECT
.20	Let R be a relation on th	ne set N be defined by {(x, y) x, y ∈ N, 2x + y = 4 (3) Transitive	(4) None of these	6.34
.21	Let R be the relation on (1) Reflexive and Symm (3) Transitive only	the set R of all real num etric	(4) Anti-symmetric onl	у	
.22	In a class of 30 pupils, 1 at least one subject and (1) 16	2 take needle work, 16 t no one takes all three th (2) 6.	ake physics and 18 take en the number of pupils (3) 8	history. If all the 30 students take taking 2 subjects is (4) 20	
23	The number of elements (1) 3	s in the power set of {a, b (2) 7	o, c} (3) 8	(4) 6	6.35
	The empty set of the foll (1) {x : x is a real number (3) {x : x is a natural num	er and $x^2 - 1 = 0$	(2) {x : x is a real num (4) {x : x is a real num	ber and $x^2 + 1 = 0$ } ber and $x^2 = x + 2$ }	
	The set A = $\{x : x \in R, x \in R, x \in A\}$ (1) $\{-4, 3, 4\}$	² = 16 and 2x = 6} equal (2) φ	s (3) {4, 4}	(4) {3}	
(Let R = {(a, a)} be a rela (1) Symmetric (3) Transitive	tion on a set A.Then R i	s (2) Antisymmetric (4) Neither symmetric	nor anti-symmetric	6.3
7 1	If R is an equivalence re (1) Reflexive	lation on a set A, then R (2) Symmetric		(4) None of these	
vel :	ll (Tough)				
2	% families buy all the th	lewspaper 0, 070 faithin	CODUVADIOR 30 hu	r A, 20% families buy newspape y B and C and 4% buy A and C. h buy A only is (4) 1400	lf
T (1	The number of elements 1) 2	in the set {(a, b) : 2a² + (2) 4	+ 3b² = 35, a, b ∈ Z), w (3) 8	here Z is the set of all integers, (4) 12	is
	Ø				

6.30	Let a relation R be defined by R =	= {(4, 5), (1, 4), (4, 6), (7, 6), (3, 7)}, the	en R ⁻¹ oR is		
	(1) Reflexive only (2) Symr	metric only (3) Transitive only	(4) Equivalence		
6.31	Let R be a relation over the set N	I × N and it is defined by (a, b)R(c, d) ⊨	⇒ a + d = b + c. Then R is NOT		
	(1) Reflexive (2) Symr	metric (3) Transitive	(4) Anti Symmetric		
6.32	Let R ₁ be a relation defined by R.	$a_1 = \{(a, b) a \ge b, a, b \in R\}$. Then R_1 is	BO THOMATTE . I- HOIT:		
	(1) Only reflexive	(2) Both Reflexive an			
	(3) Symmetric, transitive but not re		e nor reflexive but symmetric		
6.33	Let A = {1, 2, 3, 4} and R be a re	elation in A given by R = {(1, 1), (2, 2),	, (3, 3), (4, 4), (1, 2), (2, 1), (3, 1		
	(1, 3)}. Then R is				
	(1) Reflexive (2) Anti	symmetric (3) Transitive	(4) An equivalence relation		
SECT	TION - II : ASSERTION & RE	EASONING TYPE			
6.34	Statement-1 : If A = {1, 2, 3} &				
		change if one or more elements of the	e set are repeated.		
		ent-2 is True; Statement-2 is a correc			
		ent-2 is True; Statement-2 is NOT a c			
	(3) Statement-1 is True, Statement-2 is False				
	(4) Statement-1 is False, Statem				
	(0 (0-) (5)		-) (2) (1-,) (-,		
6.35	Statement - 1 : Total number o	of relations that can be defined from	set A = {1, 2, 3} to a set B = {a,		
	Statement - 2 : If n(A) = p and	n(B) = q then total number of relatio	ons from A to B is 2 ^{pq}		
	(1) Statement-1 is True, Stateme	ent-2 is True; Statement-2 is a corre	ect explanation for Statement-1		
	(2) Statement-1 is True, Stateme	ent-2 is True; Statement-2 is NOT a	correct explanation for Statem		
	(3) Statement-1 is True, Stateme				
	(4) Statement-1 is False, Statem	ment-2 is True			
0.0	Statement - 1 - 1 ot A = (1 2 3)	s} and R = {(1, 1), (2, 3)}, then R is r	eflexive relation on A.		
.36	a A Jatian Don	a set A is said to be reflexive if eve	ery elements of A is related to		
	Statement - 1 : Let A = {1, 2, 3} and it of the product of the pro				
	(1) Statement-1 is True, Statem	nent-2 is True; Statement-2 is NOT a	a correct explanation for State		
	(2) Statement-1 is True, Statem	ient-2 is true, Statement-2 is NOT			
	(3) Statement-1 is True, Statem	nent-2 is False			
	(4) Statement-1 is False, Stater	ment-2 is True			
			10210 10 2		
		the learning of [.] abortion , [24] -			

26

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

7.3

-1 is

ake

r If

S

(

fA)

RB CR

	50 JEE (Main) - RRB (2)		
	TOPIC 7 FUNCTION	6.30	Let a r (1) Re
	7 FUNCTION	6.31	Let R (1) R
	ECTION - I : STRAIGHT OBJECTIVE TYPE	6.32	Let F (1) C
7.1	The integral points of domain of the function $f(x) = {(2x^2-7x+11)}C_{(7x-x^2-6)} + {\log_{[x+1/3]}} x^2-2x-3 $ where [.]		(3) 5
	denotes the greatest integer function are -	6.33	Let
	(1) {2, 4, 5, 6} (2) $\left[\frac{5}{3}, \infty\right] - \{2, 3, 4, 5, 6\}$		(1, (1)
	$(3) \left[\frac{5}{3}, \infty\right) - \{3\} $ $(4) \{2, 3, 4, 5, 6\}$	SE0	CTIO
7.2	If $f(x) = \cos^{-1}\left(\frac{\sqrt{2x^2 + 1}}{x^2 + 1}\right)$, then range of $f(x)$ is		S ¹ (1
	(1) $[0, \pi]$ (2) $\left(0, \frac{\pi}{4}\right]$ (3) $\left(0, \frac{\pi}{3}\right]$ (4) $\left[0, \frac{\pi}{2}\right]$		() ()
7.3	If f(x) is defined on (0, 1), then the domain of $f(e^x) + f(\ell n x)$ is - (1) (-e, -1) (2) (-e, -1) \cup (1, e) (3) (- ∞ , -1) (4) (-e, e)	6.3	5
7.4	The set of possible values of a for which the function $f(x) = x^3 + (a + 2)x^2 + 3ax + 5$ is one one is (1) [1, 4] (2) (1, 4) (3) $(-\infty, 1)$ (4) $(4, \infty)$		
7.5	The domain of the function $f(x) = \sqrt{\sin^{-1}(\log_3 x)} + \frac{\tan^{-1} x}{\sqrt{x^2 - 5x + 6}}$ is		
	(1) $[1, 3]$ (2) $[1, 3)$ (3) $[1, 2) \cup (2, 3]$ (4) $[1, 2)$		
7.6	If $F(x) = \log(\csc^{-1}x) + \frac{x^2 - 3x + 2}{x^2 - 2x + 1} + \sqrt{4[x] - [x]^2}$, where [.] = greatest integer function, then the	6	.36
7.7	largest interval of x for which F(x) is defined, is The range of the function $f(x) = x - 1 + x - 2 , -1 \le x \le 3$ is		
2.00	(1) [1, 3] (2) [1, 5] (3) [3, 5] (4) [1, 5)		
7.8	The range of the function $f(x) = ln (sin^{-1} (x^2 + x))$ is		
	$(1)\left[-\ln\left(\sin^{-1}\frac{1}{4}\right), \ln\frac{\pi}{4}\right](2)\left[-\ln\frac{\pi}{2}, \ln\frac{\pi}{2}\right] \qquad (3)\left(0, \ln\frac{\pi}{2}\right] \qquad (4)\left(-\infty, \ln\frac{\pi}{2}\right]$		
7.9	The domain of function $f(x) = \frac{\sec^{-1} x}{\sqrt{x - [x]}}$, where [.] is greatest integer function.		
	$(1) R - \{(-1, 1) \cup (n, n \in I)\} $ $(2) R - (-1, 1)$ $(3) R^{*} - (0, 1) $ $(4) R - (n, n \in I)$		
	esonance®27	(八
		-	

6.30	Let a relation R be define (1) Reflexive only	ed by R = {(4, 5), (1, 4), (2) Symmetric only	, (4, 6), (7, 6), (3, 7)}, t (3) Transitive only	hen R ⁻¹ oR is (4) Equivalence		
6.31	Let R be a relation over t (1) Reflexive	the set N × N and it is o (2) Symmetric	defined by (a, b)R(c, d (3) Transitive) ⇒ a + d = b + c. Then R is NOT (4) Anti Symmetric		
6.32	Let R, be a relation defin	ped by $B = I(a b) a > b$	hahc R\ Then R i			
0.52	(1) Only reflexive		(2) Both Reflexive a			
	(3) Symmetric, transitive	but not reflexive		ve nor reflexive but symmetric		
6.33	Let A = {1, 2, 3, 4} and F (1, 3)}. Then R is	R be a relation in A give	en by R = {(1, 1), (2, 2	2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1),		
	(1) Reflexive	(2) Anti symmetric	(3) Transitive	(4) An equivalence relation		
CEC.	TION - II : ASSERTIO		TYPE			
6.34	Statement-1: If $A = \{1, 2, 3\}$ & $B = \{2, 2, 1, 3, 3\}$ are equal.					
	Statement-2 :A set does not change if one or more elements of the set are repeated.(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.					
	 (1) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 					
	(2) Statement-1 is True, Statement-2 is False(3) Statement-1 is True, Statement-2 is False					
	(4) Statement-1 is False					
6.35	Statement - 1 : Total n	umber of relations tha	t can be defined from	set A = {1, 2, 3} to a set B = {a, b} i		
	Statement - 2 : If $n(A) = p$ and $n(B) = q$ then total number of relations from A to B is 2^{pq}					
	(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.					
	(2) Statement-1 is True,	, Statement-2 is True;	Statement-2 is NOT a	correct explanation for Statement-		
	(3) Statement-1 is True					
	(4) Statement-1 is False					
6.36	Statement - 1 : Let A =	= {1, 2, 3} and R = {(1,	1), (2, 3)}, then R is r	eflexive relation on A.		
	Statement - 2 : A relation R on a set A is said to be reflexive if every elements of A is related to itsel					
	(1) Statement-1 is True	, Statement-2 is True;	Statement-2 is a corr	rect explanation for Statement-1.		
	(2) Statement-1 is True	, Statement-2 is True;	Statement-2 is NOT	a correct explanation for Statemer		
	(3) Statement-1 is True					

- RRB CR

where [.]

hen the

27

				50 JEE (Main) - RRB (2)	
				then the value of g'(1) is	
Gandersteineun			() is inverse of function	n f(X), mon the	SECT
7.18	Let $f(x) = x^{105} + x^{53}$	$+ x^{27} + x^{13} + x^3 + 3x + 1.$	If $g(x)$ is invertice (3) $-\frac{1}{3}$	on $f(x)$, then the value of $g'(1)$ is (4) not defined	SECT
	(1) 3	(2) $\frac{1}{3}$	$(3) = \frac{3}{3}$	and $f(-4) = -4$, then $f(2011)$ is (4) - 4	7.29
7.19	The function f(x) is	defined for all real x, if	f(x + y) = f(4)	(4) - 4	
	(1) 2010	(2) 2012	(3) 4	$\int_{-\infty}^{10} f(r)$	
7.20	$ f 2f(y_1) - (f(y_1)) +$	(f, y) for all $y, y \in R$ and	(3) $f(1) = 3$, then the value (3) $\frac{3^{10} - 1}{2}$	of $\sum_{r=1}^{r}$	
	$\Pi \Sigma ((xy) = (I(x)) + (I(x))$	r(y))^ 101 all x, y -	3 ¹⁰ - 1	(4) None of these	
	(1) $\frac{3}{2}(3^{10}-1)$	(2) $\frac{3}{2}(3^{9}-1)$	(3) 2		
7.21	The range of the fu	unction $f(x) = 5 \cos x + 3$	$3\cos\left(x+\frac{\pi}{3}\right)+4$ is	(4) None of these	7.30
	(1) [-3, 11]	(2) [-18, 10]	(3) [-10, 18]		
	I : II (Tough)				
7.22	If $g(x) = \log_{f^2(x)} \left(\frac{f}{f} \right)$	$\frac{f(x)-1}{f(x)-2}$ + $(3f(x)-3)^{2/5}$	$3 + \sin^{-1}\left(\frac{f(x)}{7}\right) + \sqrt{\cos^{-1}}$	$\widehat{(\sin f(x))}$, where $f(x)$ is a real valued	
	function, then the rat (1) $[-7, 7]$ (3) $[-7, 1) \cup (2, 7]$	ange of f(x) for which g()	(x) is defined. (2) [-7, − 1) ∪ (− (4) None of these	1, 1) ∪ (2, 7]	
7.23	If f(x) is a polynomia	al satisfying f(x). $f\left(\frac{1}{x}\right)$	$= f(x) + f\left(\frac{1}{x}\right)$ and $f(3)$	= 82, then f(2) is equal to :	
	(1) 16	(2) 17	(3) 19	(4) 21	
7.24	If solution of the inec	$\frac{1}{1-x}$ is (a,	b) then the value of 2a	+ b is :-	
	(1) $\sqrt{5}$	(2) $-\sqrt{5}$	(3) 2√5	(4) - 2\sqrt{5}	
	The range of function (1) (–4, 3)	n f(x) = 3 sin x – 4 cos (2) [–4, 3]	s x is :- (3) (-3, 4)	(4) [-3, 4]	
. 26 T	he fundamental per	iod of the function f(x)	$= [x] + \left[x + \frac{1}{3}\right] + \left[x + \frac{1}{3}\right]$	$\left[\frac{2}{3}\right] - 3x + \sin 3\pi x - 1$ is :-	
(1	1) $\frac{1}{3}$	(2) $\frac{2}{3}$	(3) $\frac{4}{3}$	(4) None of these	
27 Le	et function f : $X \rightarrow Y$, defined as $f(x) = x^2 -$	- 4x + 5 is invertible and	d its inverse is f⁻¹(x), then	
(1) $X = [2, \infty), Y = [1, \infty)$	$(\infty), f^{-1}(x) = 2 + \sqrt{x}$	$\overline{1}$ (2) X = (-∞, 2],	$Y = [1, \infty), f^{-1}(x) = 2 + \sqrt{x-1}$	
(3)) $X = (-\infty, \infty), Y = [$	1, ∞), f ⁻¹ (x) = 2 - $\sqrt{x^2}$	$\frac{1}{2}$ +1 (4) none of these	$f^{-1}(1, \infty), f^{-1}(x) = 2 + \sqrt{x-1}$	
8 f(x	$x = \frac{x^3}{3} + \frac{x^2}{2} + ax$	+ b $\forall x \in R$, then f	ind least value of 'a' for	r which f(x) is injective function	
(1)		(2) 1	(3) $\frac{1}{2}$	(4) 1	
Re	sonance"_				,
Euucan	ng for better tomorrow				9

SECTION - II : ASSERTION & REASONING TYPE

7.29

Statement-1: If $f(x) = \log \sqrt{\frac{1-x}{x}}$, g(x) = [x], then f(g(x)) is not defined

Statement-2: For fog be defined, Range of $g(x) \cap Domain of f(x) \neq \phi$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

7.30 **Statement-1**: $f(x) = \sin x + \cos x$, defined for R⁺ cannot be a periodic function.

Statement-2: Domain of a periodic function should be unbounded.

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False.

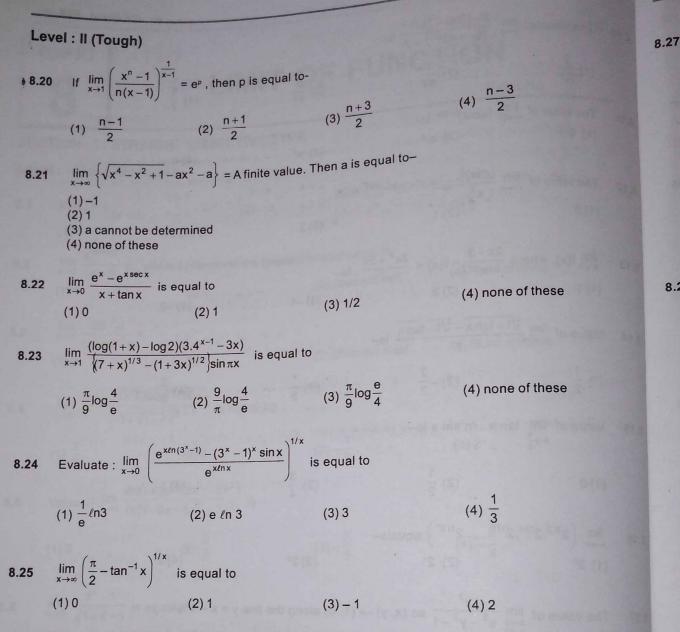
(4) Statement-1 is False, Statement-2 is True.

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

1

ued

BCR


				50 JEE (Main) - RRB (29	
	торіс 8	LIMIT C	OF FUNCT	FION	8.10 The value $(1) \frac{2}{53}$
	CTION - I : STRAIGH		the ast when the same		8.11 The value (1) 0
8.1	vel : l (Easy/Moderate If $f(x) = \begin{cases} 3x - 1 & , & x \\ 2x + 3 & , & x \end{cases}$ (1) 7	(2) 2 $x \ge 1$ $x < 1$, $g(x) = \begin{cases} 3 - x , x \\ 2x - 3 , x \end{cases}$ (2) 2	<2 $\geq 2^{,}$ then $\lim_{x\to 2^{+}} f(g(x)) =$ (3) 4	(4) 5	8.12 The val (1) 0
8.2		e [.] deonotes the greatest (2) π	integer function. (3) does not exit	(4) None of these	8.13 $\lim_{x \to \infty} f(x)$
8.3	$\lim_{x \to \infty} \frac{\cot^{-1} x}{\csc^{-1} x} =$ (1) 0	(2) 1	(3) does not exist	(4) None of these	8.14 Value
8.4	$\lim_{x \to 0^{+}} \frac{-1 + \sqrt{1 + 4(\tan x)}}{-1 + \sqrt{1 + 4}}$		1	(4) 2	(1) <u>1</u> 8.15 Valu
8.5	(1) $\frac{1}{2}$ Value of $\lim_{x \to 0} \frac{\ln(1+2x)}{\ln(1-5x)}$	(2) 0 $\frac{x - 3x^2 + 4x^3}{x + 6x^2 - 7x^3}$ is -	$(3) - \frac{1}{2}$		(1)
	(1) 0	(2) $\frac{3}{4}$	$(3) - \frac{2}{5}$	$(4) - \frac{5}{4}$	8.16 lin n→ (1
8.6	$\lim_{x \to 0} \frac{3^{x} - 1}{\sqrt{1 + x} - 1}$ is equal (1) ℓ n 3	ual to– (2) 2ℓn 3	(3) 3ℓn 3	(4) 0	8.17 TI
8.7	If $\lim_{x \to -n} \frac{x^7 + n^7}{x + n} = 7$, th (1) ± 5	nen the value of n is– (2) 0	(3) ± 2	(4) ± 1	8.18 1
8.8	The value of $\lim_{x\to 2} \frac{\tan(e)}{\ln(e)}$	$\frac{e^{x-2}-1)}{(x-1)}$ is-			8.19
8.9	(1) 2 The value of $\lim_{x \to 0} \frac{(1+x)}{x}$	$(2) -2$ $(2)^{1/x} - e + \frac{ex}{2}$ is equal to	(3) 1 D-	(4) –1	
	(1) $\frac{5}{24}$ e	11x ² (2)0	(3) $\frac{11}{24}$ e	(4) e 24	
	Resonance [®]			and a factor	31 八

RB CR

8.10 The value of
$$\lim_{x\to 0} \frac{2^{-(256-7x)^{16}}}{(5x-32)^{15}-2}$$
 is.
(1) $\frac{2}{53}$ (2) $\frac{7}{64}$ (3) $\frac{3}{71}$ (4) $\frac{5}{7}$
8.11 The value of $\lim_{x\to 0^{-1}} \frac{(3nx)^{17n}}{(x^2)^{16}}$ (3) e^2 (4) e
8.12 The value of $\lim_{x\to 0^{-1}} \frac{(3nx)^{17n}}{x^2}$ is.
(1) 0 (2) e⁻¹ (3) e² (4) e
8.13 $\lim_{x\to 0^{-1}} f(x)$, where $\frac{2x-3}{x} < f(x) < \frac{2x^2+5x}{x^2}$, is.
(1) (2) (3) -1 (4) -2
8.14 Value of $\lim_{x\to 0^{-1}} \frac{3\sqrt{1+\tan x}}{x}$ is.
(1) $\frac{1}{2}$ (2) $-\frac{2}{3}$ (3) $\frac{1}{3}$ (4) $\frac{2}{3}$
8.15 Value of $\lim_{x\to 0^{-1}} \frac{3\sqrt{1+\tan x}}{x}$ is.
(1) $\frac{1}{2}$ (2) $-\frac{2}{3}$ (3) $\frac{1}{3}$ (4) $\frac{1}{3}$
8.16 $\lim_{x\to \infty^{-1}} \left(2^{1/2}, 2^{1/4}, 2^{1/3}, \dots, 2^{1/2}\right)$ equals.
(1) 2^{2} (2) 2^{3} (3) $\frac{2}{4}$ (4) 1
8.16 $\lim_{x\to 0^{-1}} \left(2^{1/2}, 2^{1/4}, 2^{1/3}, \dots, 2^{1/2}\right)$ equals.
(1) 2^{2} (2) 2^{3} (3) 2^{2} (4) 2^{3}
8.17 The value of $\lim_{x\to 0^{-1}} \frac{\sqrt{3}}{x^2-\sqrt{2}-1}$ as $(x, y) \rightarrow (1, 0)$ along the line $y = x - 1$ is.
(1) $2^{-(1)}$ (2) 1 (3) 2 (4) -1
8.18 If $\lim_{x\to 0^{-1}} \frac{x(1+\sin 2n)}{x^2} = 1$ then value of $a + b$:
(1) -4 (2) -6 (3) 1 (4) none of these
8.19 The value of $\lim_{n\to\infty^{-1}} \left(\frac{1+\sin(\frac{n}{n})^n}{n}$ is:
(1) (2) e^{4} (3) e^{4} (4) e^{-x}
EXERCIPICICIENT

50 JEE (Main) - RRB Ca

8.2

SECTION - II : ASSERTION & REASONING TYPE

Statement-1 : If the graph of the function y = f(x) has a unique tangent at the point (a, 0) through which 8.26

the graph passes then $\lim_{x \to a} \frac{\log_e(1 + 6(f(x)))}{3f(x)} = 2.$

Statement-2 : Since the graph passes through (a, 0). Therefore f(a) = 0. When f(a) = 0 given limit is zero by zero form so that it can be evaluate by using L-Hospital's rule. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(4) Statement-1 is False, Statement-2 is True

so JEE (Main) - RRB CR

27 Statement-1 :
$$\lim_{x \to 0^+} x \sin \frac{1}{x} =$$

Statement-2 : $\lim_{y \to \infty} y \sin \frac{1}{y} = 1$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

3.28 Statement-1 :
$$\lim_{x \to 0} \left(\frac{g(2-x^2)}{g(2)} \right)^{\frac{4}{x^2}} = e^{-\frac{1}{2}}$$
, where $g(2) = -40$ & $g'(2) = -5$.

Statement-2: If $\lim_{x \to a} f(x) = 1$, $\lim_{x \to a} g(x) \to \infty$ then $\lim_{x \to a} \{f(x)\}^{g(x)} = \lim_{x \to a} (f(x) - 1)g(x)$

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

vhich

- RRB CR

nit is

.1

	9 CONTINUITY	& DERIVABILITY
SE	CTION - I : STRAIGHT OBJECTIVE TYPE	The second secon
Lev	rel : I (Easy/Moderate)	which of the following is
0.1	If $f(x) = a \sin^7 x + be^{ x } + c x ^5$ and if $f(x)$ necessarily true - (1) $a = b = c$ (2) $a = 0$, $b = 0$, $c \in F$	is differentiable at $x = 0$ then which of the following is R (3) b = c = 0, a $\in \mathbb{R}$ (4) b = 0 and a and c $\in \mathbb{R}$
2	If $f(x) = \frac{1}{x-1}$ and $g(x) = \frac{x-2}{x+3}$, then number of	points of discontinuity in $f(g(x))$ is
	(1) 1 (2) 2	(3) 3 (4) 4
	<i>G</i>	
.3	If f(x) = $\begin{cases} \frac{ x-1 }{1-x} + a; & x > 1\\ a+b & ; & x = 1 \\ \frac{ x-1 }{1-x} + b; & x < 1 \end{cases}$	- 1 then a and b are respectively-
0	$ f(x) = \begin{cases} a+b & ; x = 1, \text{ is continuous at } \\ \frac{ x-1 }{ x-1 } +b; x < 1 \end{cases}$	
	(1) 1, 1 (2) 1, -1	(1) sens of these
	(1) 1, 1 If function	
	$f(x) = \begin{cases} x + a\sqrt{2}\sin x; & 0 \le x < \pi/4 \\ 2x\cot x + b & ; & \pi/4 \le x \le \pi/2 \\ a\cos 2x - b\sin x; & \pi/2 < x \le \pi \end{cases}$	ontinuous in [0, π] then a and b are respectively–
	(1) $\pi/6$, $-\pi/12$ (2) $-\pi/6$, $\pi/4$	(3) $-\pi/3$, $\pi/12$ (4) $\pi/3$, $-\pi/4$
	The function $f(x) = sin(log_e x), x \neq 0$, and 1 i (1) is continuous at $x = 0$ (3) has jump discontinuity at $x = 0$	if x = 0 (2) has removable discontinuity at x = 0
	If $f(x) = \begin{cases} 3^x, & -1 \le x \le 1 \\ 4 - x, & 1 < x < 4 \end{cases}$, then at $x = 1$, $f(x)$) will be :
	(1) continuous but not differentiable(3) continuous and differentiable	(2) neither continuous nor differentiable(4) differentiable but not continuous
	The function $f(x) = x - 2 $ is not derivable at (1) exactly one point (2) exactly two point	(3) exactly three point (4) exactly four point
	The function $f(x) = \frac{x}{1+ x }$ is differentiable in	
	(1) $(-\infty, \infty)$ (2) $(-\infty, 0)$	man and and the second se
	If $f(x) = x + 1 \{ x + x - 1 \}$, then number of	points of in $[-2, 2]$ where $f(x)$ is not differentiable is (3) 3 (4) 4

JEE (Main) - RRB CR - RRB CR Which of the following function are discontinuous in $(0, \pi)$. 9.10 (1) cosx + sin > (2) $\cos^2 x + \sin^2 x$ (3) $f(x) = \begin{cases} 1 & 0 \le x \le \frac{3\pi}{4} \\ \frac{2}{\sqrt{3}} \sin\left(\frac{4x}{9}\right), & \frac{3\pi}{4} < x < \pi \end{cases}$ (4) $f(x) = \begin{cases} x \sin x & 0 \le x \le \frac{\pi}{2} \\ \frac{\pi}{2} \sin(\pi + x), & \frac{\pi}{2} < x < \pi \end{cases}$ Which of the following is discontinuous function 9.11 (1) |x| (2) x + |x| (3) x |x|(4) [X] The function y = f(x) is defined by x = 2t - |t|, $y = t^2 + |t|$, $t \in R$ in the interval $x \in [-1, 1]$, then 9.12 wing is (1) f(x) is discontinuous at some points (2) f(x) is differentiable everywhere (3) f(x) is continuous but not derivable at x = 0(4) f(x) is constant function If $f(x) = \begin{cases} (1+|\sin x|)^{a/|\sin x|}, & -\pi/6 < x < 0 \\ b, & x = 0 \\ e^{\tan 2x/\tan 3x}, & 0 < x < \pi/6 \end{cases}$, is continuous at x = 0. Then find the value of $\frac{a}{b}$ (1) $\frac{2}{3}e^{-2/3}$ (2) $\frac{2}{3}e^{2/3}$ (3) $\frac{3}{2}e^{2/3}$ (4) $\frac{3}{2}e^{-2/3}$ 9.13 A function f(x) is defined as below f(x) = $\frac{\cos(\sin x) - \cos x}{x^2}$, x $\neq 0$ and f(0) = a 9.14 f(x) is continuous at x = 0 if 'a' equals (2) 4 (4)6 (3)5(1)0If f(x) = $\begin{vmatrix} \tan^{-1}(\tan x); & x \le \frac{\pi}{4} \\ \pi[x] + 1 & ; & x > \frac{\pi}{4} \end{vmatrix}$, then jump of discontinuity is 9.15 (where [.] denotes greatest integer function) (1) $\frac{\pi}{4} - 1$ (2) $\frac{\pi}{4} + 1$ (3) $1 - \frac{\pi}{4}$ (4) $-1 - \frac{\pi}{4}$ $f(x) = \begin{cases} \frac{\sqrt{(1+px)} - \sqrt{(1-px)}}{x}, & -1 \le x < 0\\ \frac{2x+1}{x-2}, & 0 \le x \le 1 \end{cases}$ is continuous in the interval [-1, 1], then 'p' is equal to: (1) - 1 (2) - 1/2 (3) 1/2 (4) 1 9.16 If $f(x) = \begin{cases} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}}, & x \neq 0\\ 0, & x = 0 \end{cases}$, then f(x) is 9.17 (1) continuous as well differentiable at x = 0(2) continuous but not differentiable at x = 0(3) neither differentiable at x = 0 nor continuous at x = 0(4) none of these The function $f(x) = \sin^{-1}(\cos x)$ is: (2) continuous at x = 09.18 (1) discontinuous at x = 0 (4) none of these (3) differentiable at x = 0Resonance

An evaluation version of novaPDF was used to create this PDF file. Purchase a license to generate PDF files without this notice.

R

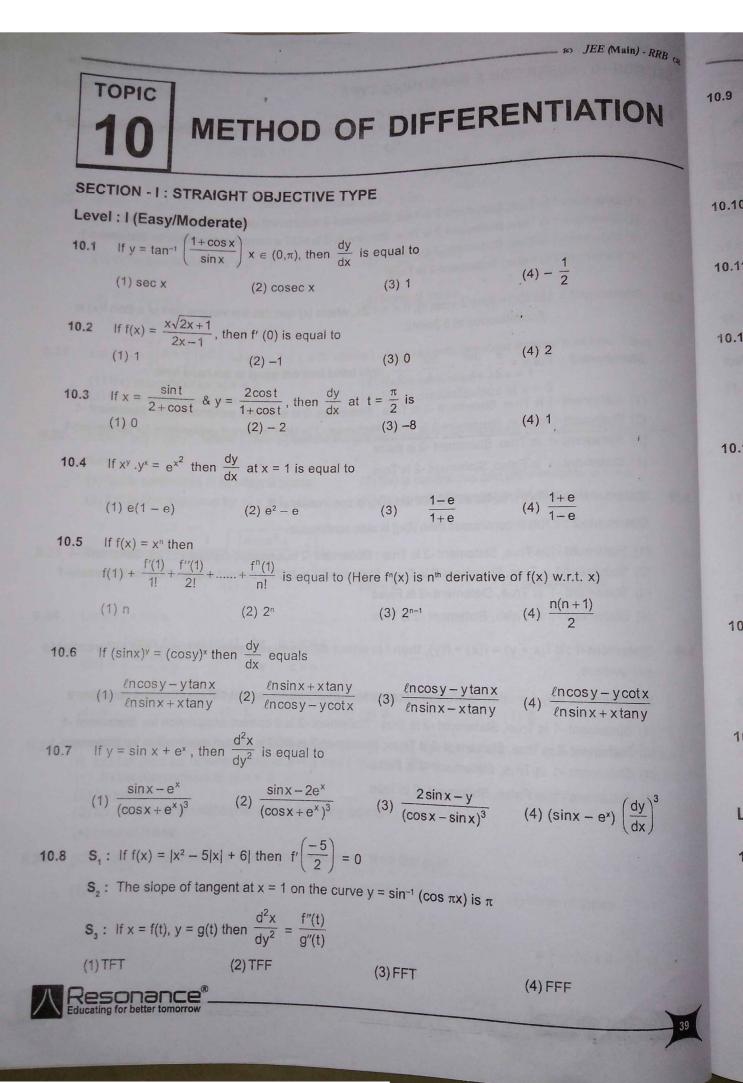
80 JEE (Main) - RRB (2) SECTI Level : II (Tough) Let $f : R \to R$ be a function such that $f\left(\frac{x+y}{3}\right) = \frac{f(x)+f(y)}{3}$, f(0) = 0 and f'(0) = 3 then f(x) is : (1) 3x (2) 3x + 1 (3) $4x^2$ (4) $4x^2 + 1$ 9.27 9.19 If f(x) = $\begin{cases} \frac{e^{[x]+|x|} - 2}{[x]+|x|} , & x \neq 0 \\ -1 , & x = 0 \end{cases}$, (where [.] denotes G.I.F.) then 9.20 (2) $\lim_{x \to 0^+} f(x) = -1$ (1) f(x) is continuous at x = 0(4) None of these 9.28 (3) $\lim_{x \to 0^-} f(x) = 1$ Let $f(x) = \left| \left(x + \frac{1}{2} \right) [x] \right|$, when $-2 \le x \le 2$. where [.] represents greatest integer function. Then 9.21 (2) f(x) is continuous at x = 1(4) f(x) is discontinuous at x = 0(1) f(x) is continuous at x = 2(3) f(x) is continuous at x = -1If $f(x) = [x^2] + \sqrt{\{x\}^2}$, where [.] and {.} denote the greatest integer and fractional part functions respectively. 9.22 then-(2) f(x) is continuous and differentiable at x = 0(1) f(x) is continuous at all integral points (4) f(x) is not differentiable for all $x \in I$. 9.29 (3) f(x) is discontinuous for all $x \in I - \{1\}$ The value of $\lim_{x \to \pi} \frac{1}{(x - \pi)} \left(\sqrt{\frac{4\cos^2 x}{2 + \cos x}} - 2 \right)$ is 9.23 (4) does not exist (3) - 2(2) 2(1) 09.24 Let $f(x) = \sin x$ $g(x) = \begin{cases} \{max.f(t), 0 \le t \le x\} & \text{for } 0 \le x \le \pi \\ \frac{1 - \cos x}{2} & \text{for } x > \pi \end{cases}$ 9. Then number of points in $(0, \infty)$ where f(x) is not differentiable is-(1) 0 (2) 1 (3) 2 (4) 3A function f : R \rightarrow R satisfies the equation f(x + y) = f(x) f(y) for all x, y \in R and f(x) \neq 0 for any x in 9.25 R. Let function be differentiable at x = 0 and f'(0) = 2. Then (1) f(x) is discontinuous at x = 0(2) $f(x) = e^{2x}$ (3) f(x) is not differentiable at infinitely many points (4) none of these $g(t) = \lim_{x \to 0} (1 + a \tan x)^{t/x}$, a is even prime number, then find g(2)9.26 $(2) e^{3}$ $(1) e^{2}$ $(3) e^4$ (4) none of these

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

Resonance Educating for better tomo

9.27	Statement - 1 : The function $f(x) = \{x\}$, where $\{.\}$ denotes the fractional part function is discontinuous at $x = 1$
	Statement - 2: $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$
	3-YT SVITOSLEO THORATE TO MOTIVAS
	 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True
9.28	Statement-1 : Let $f(x) = [\cos x + \sin x]$, $0 < x < 2\pi$, where [x] denotes the integral part of x then $f(x)$ is discontinuous at 5 points.
	Statement-2 : For $x = \frac{\pi}{2}$, $\frac{3\pi}{4}$, π , $\frac{5\pi}{4}$, $\frac{3\pi}{2}$, right hand limit not equal to left hand limit.
	 (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-7 (3) Statement -1 is True, Statement -2 is False (4) Statement -1 is False, Statement -2 is True
9.29	Statement-1 : If $ f(x) \le x $ for all $x \in R$ then $ f(x) $ is continuous at 0.
	Statement-2 : If f(x) is continuous then f(x) is also continuous.
	 (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement (3) Statement -1 is True, Statement -2 is False
	(4) Statement -1 is False, Statement -2 is True
9.30	Statement-1 : If $f(x + y) = f(x) + f(y)$, then f is either differentiable everywhere or not differenti everywhere.
	Statement-2 : Any function is either differentiable everywhere or not differentiable everywhere
	 Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -2 is True; Statement-2 is NOT a correct explanation for Statement -2 is Statement -1 is True, Statement -2 is False Statement -1 is True, Statement -2 is False
	(4) Statement -1 is False, Statement -2 is True

ance ter tomorrow


3 08

ely,

in

1

BO JEE (Main) - RRB CA

$$(p) \quad S_{1}: \quad (fx^{2} + y^{2} = 5(xy-1) \operatorname{then} \frac{dy}{dx} \text{ at } (1, 3) \text{ is equal to } 12$$

$$S_{2}: \quad (fx^{2} = o^{1} \operatorname{hen} \frac{dy}{dx} \text{ at } x = 1 \text{ is equal to } 0$$

$$S_{3}: \quad (f(x) \text{ is a linear polynomial then f(1s) x) + f(s) \text{ is constant}} (1) \text{ TFT} \quad (2) \text{ TFF} \quad (3) \text{ TTT} \quad (4) \text{ FFF}$$

$$(1, 0) \quad (f(x)) = (x), f(y) \text{ and } f(3) = 1, \text{ then f(10) is equal to } \dots \dots (3) \quad (4) \text{ none of these}$$

$$(1, 10) \quad (f(x)) = (x), f(y) =$$

ducating for better tomorrow

RRB ca

BO JEE (Main) - RRB CO

(4) none of these

(4) can not be determined

1(4) Both (1) and (2) are correct

SEC Leve

11.1

11.2

11.

11

1.

Statement-2: $\frac{d}{dx}(\ell nx) = \frac{1}{x}$ for x > 0

Statement-1: If $y = (1 + x) (1 + x^2) (1 + x^4)....(1 + x^{2^n})$, then y' (0) = 1

10.17 If $y = 2 \sin^{-1} \sqrt{1 - x} + \sin^{-1} 2\sqrt{x(1 - x)}$, $x \in (0, \frac{1}{2})$, then $\frac{dy}{dx}$ is equal to

(1) $\frac{1}{\sqrt{1-x^2}}$ (2) $-\frac{1}{\sqrt{1-x^2}}$ (3) 0

(2) - 1/2

(2) $\pi/2$

(1) $\frac{y^2}{1-xy}$ (2) $\frac{e^{2xy}}{1-xy}$ (3) $\frac{(x-1)y}{xy}$

The implicit equation $x^2 + 5xy + y^2 - 2x + y - 6 = 0$, then find $\frac{dy}{dx}$ at (1, 1)

, then find the value of h(10), if h(0) = 1

10.20 If $y = (e^x)^{(e^x)^{(e^x),...,\infty}}$, then $\frac{dy}{dx}$ is equal to

10.19 If $y = x^{inx}$. tan⁻¹x, then find the value of $\frac{dy}{dx}$ at x = 1

(1)1

(1) 1

 $(1)\frac{5}{8}$

10.21

10.22

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

10.18 If f be a twice differentiable function such that f''(x) = -f(x) and f'(x) = g(x). If $h(x) = (f(x))^2 + (g(x))^2$, then find the value

(3) 10

 $(3) - \frac{1}{2}$

(4) 1

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

 $(2) - \frac{5}{8}$ (3) $\frac{8}{5}$ (4) $- \frac{8}{5}$

(3) Statement-1 is True, Statement-2 is False

SECTION - II : ASSERTION & REASONING TYPE

(4) Statement-1 is False, Statement-2 is True

10.23 Statement - 1 For x < 0, $\frac{d}{dx}(\ln |x|) = \frac{1}{x}$.

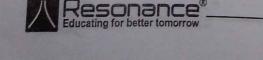
 $\frac{d}{dx}|x| = -1$ Statement - 2 For x < 0, $|x| = -x \Rightarrow$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

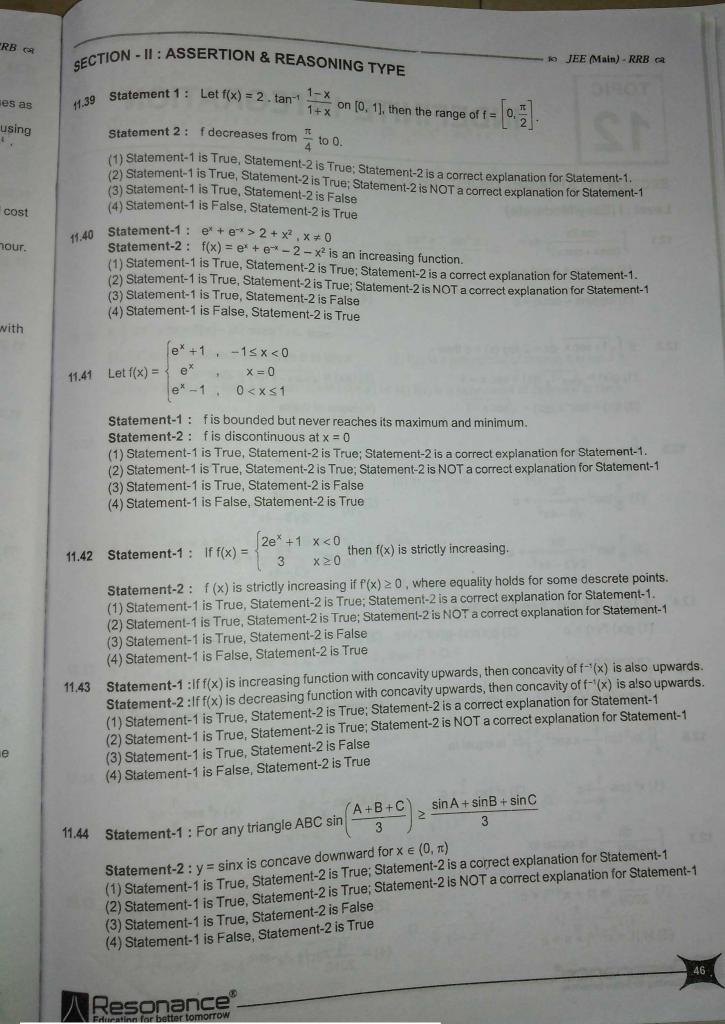

Statement - 1 Let $f: [0, \infty) \to [0, \infty)$ be a function defined by $y = f(x) = x^2$, then $\left(\frac{d^2y}{dx^2}\right) \left(\frac{d^2x}{dy^2}\right) = 1$. 10.24

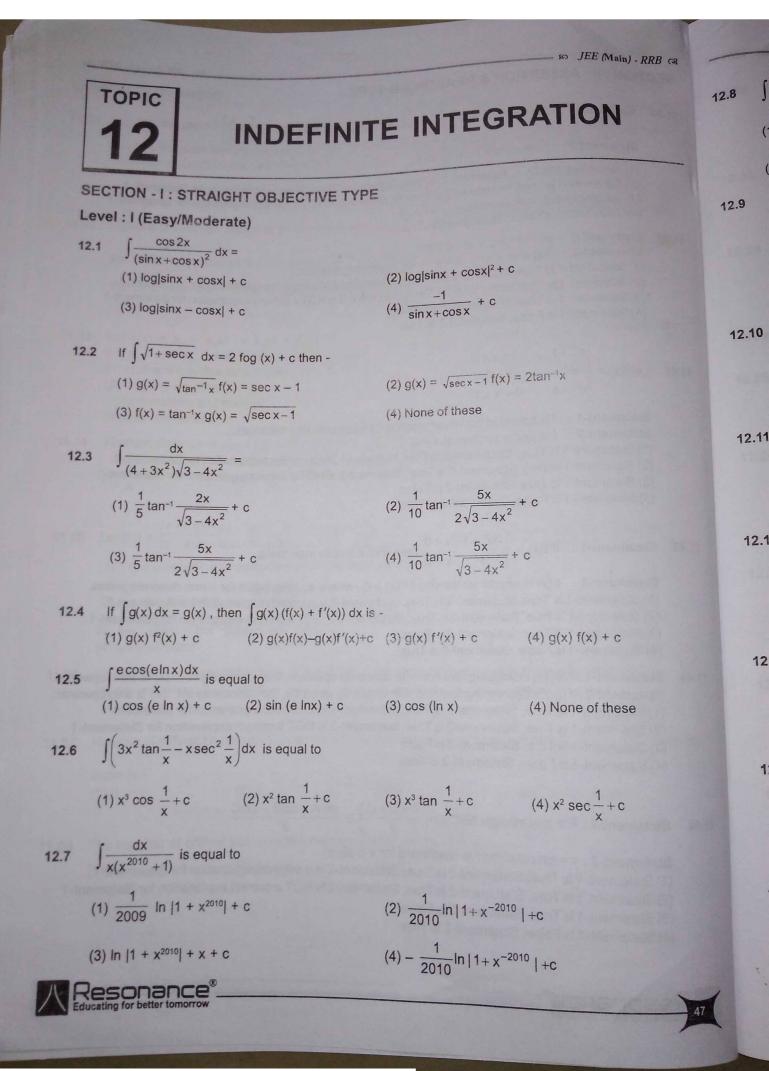
Statement - 2 $\frac{d^2y}{dx^2} = -\frac{d^2x}{dy^2} \cdot \left(\frac{dy}{dx}\right)^3$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True


		11 APPLICATION OF DERIVATIVE
+ (g(x))²	SE	CTION - I : STRAIGHT OBJECTIVE TYPE
ined		vel : I (Easy/Moderate)
	11.1	Let $f(x) = 1 + x - 2 + \sin x $, then lagrange's means value theorem is applicable for $f(x)$ in -
		(1) $[0, \pi)$ (2) $[\pi, 2\pi]$ (3) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ (4) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
	11.2	
correct		(1) $a = -\frac{3}{4}$, $b = \frac{1}{8}$ (2) $a = -\frac{3}{4}$, $b = -\frac{1}{8}$ (3) $a = \frac{3}{4}$, $b = -\frac{1}{8}$ (4) None of these
	11.3	
	11.4	Find the number of all the possible integral values of λ for which the curve $y = \frac{x^4}{4} - \frac{3x^2}{2} + \lambda x - 3$ has three
		tangents parallel to the axis of x.(1) 1(2) 2(3) 3(4) 4
1	11.5	Let $f(x) = \begin{cases} x^{\alpha} \sin \frac{\pi}{nx} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$, where $n \in I$, $n \neq 0$. If Rolle's theorem is applicable to $f(x)$ in the interval $x = 0$.
		[0, 1], then(1) for $\alpha > 0$, least value of n is -2 (2) for $\alpha > 1$, greatest value of n is -1 (3) for $\alpha > 0$, greatest value of n is 1(4) for $\alpha < 0$, least value of n is -1
	11.6	The points of contact of the vertical tangents to $x = 2 - 3 \sin \phi$, $y = 3 + 2 \cos \phi$ are : (1) (2, 5), (2, 1) (2) (3, 5), (3, -1) (3) (-1, 3), (5, 3) (4) (-1, 3), (2, 1)
	11.7	The normal to the curve $x = a (\cos \theta + \theta \sin \theta)$, $y = a (\sin \theta - \theta \cos \theta)$ at any point ' θ ' is such that : (1) it makes constant angle with x-axis (2) it passes through the origin. (3) it is at a constant distance from (0, 0)(4) none of these
	11.8	If the line $Ax + By + C = 0$ is normal to the curve $xy = 1$. then (1) $A > 0$, $B > 0$ (2) $A > 0$, $B < 0$ (3) $A < 0$, $C > 0$ (4) $A < 0$, $B < 0$ (2) $A > 0$, $B < 0$ (3) $A < 0$, $C > 0$ (4) $A < 0$, $B < 0$
	11.9	Consider curve y = f(x), then if PT = Length of tangent PN = Length of normal TM = Length of subtangent MN = Length of sub normal, then
		(1) TM . MN = f'(x) (2) $\frac{PT}{PN} = \frac{1}{f'(x)}$ (3) PT . PN = constant (4) PT . TM = constant


			50 JEE (Main) - RRB CR
11.10 If law of linear r	notion of a particle is given	h by S = $\frac{1}{2}t^3 - 16t$, then the	e acceleration at the time when the
(1) 0	es, is (2) 2	(3) 4	(4) 8
11.11 Let f(x) satisfies	the requirement of lagra	nge mean value theorem	in (0, 2). If $f(0) = 0$ and $f'(x) \le \frac{1}{2}$,
(1) $ f(x) \le 2$ (3) $f(x) = 2x$		(2) f(x) ≤ 1 (4) f(x) = 3 for at lea	ast one x in [0, 2]
11.12 If the function f(x)) = ax³ + bx² + 11x – 6 satis	fies conditions of Rolle's t	heorem in [1, 3] and f' $\left(2 + \frac{1}{\sqrt{3}}\right) = 0$,
then values of a a	and b are respectively.		
(1) 1, - 6	(2) - 2, 1	$(3) - 1, \frac{1}{2}$	(4) –1, 6
11.13 From mean values	s theorem :		
f(b) - f(a) = (b - a)	1) $f'(x_1)$; a < x_1 < b if $f(x)$ =	$\frac{1}{x}$, x ₁ is equal to	
(1) √ab	(2) $\frac{a+b}{2}$	(3) $\frac{2ab}{a+b}$	(4) ab (b – a)
11.14 For $x > 1$, $y = ln x$ (1) $x^2 - 1 > ln x$	+ 1 – x satisfies the inequ (2) x – 1 > ℓ n x	uality (3) x − 1 < ℓn x	(4) ℓn x > x
11.15 If $f(x) = \begin{cases} -x \\ x^2 + 12x - z \end{cases}$, $2 < x \le 3$ -1 , $-1 \le x \le 2^{3}$ then		
(1) $f(x)$ is increasing (3) $f'(x)$ at $x = 2$, doe	g on [–1, 2] es not exist	(2) f(x) is decreasir (4) f(x) has minimu	
1.16 Which of the followi	ing does not holds for y =	ex	
(1) $e^2 + \frac{1}{e} > 2\sqrt{e}$	(2) $e^1 + e^{-2} + e^3 > e^{-2}$	$e^{2/3}$ (3) $e^{x_1} + e^2 > 2e^{\left(\frac{x}{2}\right)^2}$	$\left(\frac{1+2}{2}\right)$, $x_1 \in \mathbb{R}$ (4) none of these
.17 The values of a for v	which $f(x) = \frac{a^2 x^3}{3} + \frac{3ax}{2}$	$\frac{x^2}{2}$ + 2x + 1 is strictly de	creasing at $x = 1$
(1) a ∈ (−2, −1)	(2) a ∈ (−1, 0)	(3) a ∈ (1, 2)	(4) a ∈ (−2, 1)
18 For $f(x) = \sin^2 x, x \in C$			and a second and a second
(1) $\frac{\pi}{6}$	(2) $\frac{2\pi}{4}$	$(3) \ \frac{3\pi}{4}$	(4) $\frac{4\pi}{3}$
9 The function $f(x) = \int_{1}^{x}$	$t(e^{t}-1)(t-1)(t-2)^{3}(t-$	3)⁵ dt has a local maxi	Mum at v –
-1 (1) 0	(2) 1	(3) 2	(4) 3
-			

	(1) hk	(2) 2hk	k > 0. A straight line pass points P and Q. Which of (3) $\frac{1}{2}$ hk	(4) h²k²
	x ² ,	X < -1	e sopaniy le younges e	
11.2	1 Let $f(x) = \begin{bmatrix} -x \\ kx^2 + p \end{bmatrix}$,	$-1 \le x \le 0$, then f $x > 0$	or what value of (k, p), f(x)	has a minima
	(1) (2, -1)	(2) (6, 0)		
11.23	2 A right circular cylind radius r, then radius	er of maximum volu of cylinder is :	(3) (–2, 0) me is inscribed in a given r	(4) (0, – 6) ight circular cone of height h an
	(1) $\frac{3r}{2}$	(2) $\frac{2r}{3}$	(3) $\frac{r}{3}$	(4) $\frac{r}{2}$
11.23	Values of n for which	the length of subno	ormal of the curve xy ⁿ = a ⁿ⁺	1 is constant
	(1) 3	(2) – 2	(3) – 3	(4) $\frac{1}{2}$
11.24		(2) // 6	$(-3, 0) \qquad (3) \lambda \in ($	λ is increasing through out num
11.25				
	(1) $\sec^{-1} x_1 + \sec^{-1} x_2$	$> \sec^{-1}\left(\frac{x_1+x_2}{2}\right)$	(2) sec ⁻¹ x ₁ + se	$c^{-1} x_2 < 2 \sec^{-1} \left(\frac{x_1 + x_2}{2} \right)$
	(3) $\sec^{-1} x_1 > \sec^{-1} x_2$	2	(4) $\sec^{-1} x_1 = \sec^{-1} x_2$	C ⁻¹ X ₂
11.26	Let f be differentiable (1) f(6) < 6	$(x \in R)$. if $f(1) = -$ (2) $f(6) \ge 8$	2 and f'(x) ≥ 2 for x ∈ [1, (3) f(6) = 5	6], then (4) f(6) ≤ 5
11.27	Let $f(x) = \frac{x^2 + 2}{[x]}$, 1 s	$\leq x \leq 3$, where [.] re	presents greatest integer	function, then
	(1) f(x) is increasing i	n [1, 3]	(2) least value o	f f(x) is 3
	(3) greatest value of	$f(x) \text{ is } \frac{11}{2}$	(3) f(x) has no g	reatest value
1.28	Shortest distance bet (1) 3	(2) 2	(0) 1	(4) 5
1.29	The distance between	n two horizontal tai	ngents of $y = x^3 + x^2 - x$ is	5-
	(1) $\frac{27}{32}$	(2) $\frac{32}{27}$	(3) $\frac{2}{3}$	(4) $\frac{1}{32}$
.30	Number of solution of (1) 0	equation sin x = x (2) 1	² + x + 1 is - (3) 2	(4) 3

1

	Level : II (T	ough)		5
1	11.31 A cylindrica	al gas container is closed	d at the top and open at the botto	om, if the iron plate of top is $\frac{5}{4}$ times as
	unck as the	e plate forming the cylin naterial for the same cap	drical sides The ratio of the ra	
	(1) $\frac{2}{3}$	(2) $\frac{1}{2}$	$(3)\frac{4}{5}$	$(4) \frac{1}{3}$
11	.32 A boat is to b	oe driven 300 km at a co	instant speed of x kmph. Speed	rules required $25 \le x \le 60$. The fuel cost
	Rs. 10 per li	tre and is consumed at	the rate of 2 + $\frac{x^2}{600}$ liters/hour	the wages of the driver is Rs. 200/hour.
	The most ec	onomical speed to drive	e the boat in kmph, is	(4) 60
	(1) 50	(2) 50√3	(3) 20√3	
11.:	(1) neither a i (2) only one n	maxima nor a minima naxima ma and minima	a ₃ x ⁶ + + a _n x ²ⁿ be a pc on f(x) has :	olynomial in a real variable x with
1.3	4 Shortest dista	ance of curve $2x^2 + 5xy$	$y + 2y^2 = 1$ from origin is	
	(1) $\frac{2}{3}$		(3) $\frac{3}{2}$	(4) $\frac{\sqrt{2}}{3}$
	(x -	a)(x b) (x b)(y	a) $(y a)(y a)$	a man in a company
1.35	Let $f(x) = \frac{(x)}{(c-x)}$	$\frac{a}{a}(c-b) + \frac{(x-b)(x-b)}{(a-b)(a-b)}$	$\frac{c}{c} + \frac{(x-c)(x-a)}{(b-c)(b-a)}$, $a < b < c$.	Which of the following are correct ?
		Carlos and the second	e has exactly two zeroes	
	$(2) \ \frac{d}{dx} \ f(x) = 0$	0, when $x = \frac{a+b+c}{3}$		
		< tan-1 (f(b)) < tan-1 (f	f(c))	
36	(3) tan ⁻¹ (f(a)) (4) none of the	< tan ⁻¹ (f(b)) < tan ⁻¹ (f se		f(2) has the value equal to - (4) 5
	(3) $\tan^{-1} (f(a))$ (4) none of the $f'(x) \le 2$ and f of (1) 4	< tan^{-1} (f(b)) < tan^{-1} (fse differentiable for $x \in R$ (2) 2	8. If f(1) = 2 and f(4) = 8, then (3) 1	(4) 5
	(3) $\tan^{-1} (f(a))$ (4) none of the $f'(x) \le 2$ and f of (1) 4	< tan^{-1} (f(b)) < tan^{-1} (fse differentiable for $x \in R$ (2) 2	8. If f(1) = 2 and f(4) = 8, then (3) 1	
7	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and f of (1) 4 Number of difference curve is - (1) 3	< tan ⁻¹ (f(b)) < tan ⁻¹ (f se differentiable for x ∈ R (2) 2 rent points on the cur (2) 1	R. If f(1) = 2 and f(4) = 8, then (3) 1 we y = x ⁴ , where the tangents (3) 2	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these
7	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and f of (1) 4 Number of difference curve is - (1) 3	< tan ⁻¹ (f(b)) < tan ⁻¹ (f se differentiable for x ∈ R (2) 2 rent points on the cur (2) 1	R. If f(1) = 2 and f(4) = 8, then (3) 1 we y = x ⁴ , where the tangents (3) 2	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these
7	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and f of (1) 4 Number of difference curve is - (1) 3	< tan ⁻¹ (f(b)) < tan ⁻¹ (f se differentiable for x ∈ R (2) 2 rent points on the cur (2) 1	R. If $f(1) = 2$ and $f(4) = 8$, then (3) 1 we y = x ⁴ , where the tangents	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these is
7	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and for (1) 4 Number of difference curve is - (1) 3 The number of the	< tan^{-1} (f(b)) < tan^{-1} (fse differentiable for $x \in R$ (2) 2 rent points on the cur (2) 1 (2) 1 critical points of the	R. If $f(1) = 2$ and $f(4) = 8$, then (3) 1 we $y = x^4$, where the tangents (3) 2 function $f(x) = x^{\frac{1}{3}} \cdot (x - 1)^{\frac{2}{3}}$	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these
87	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and for (1) 4 Number of difference curve is - (1) 3 The number of the	< tan^{-1} (f(b)) < tan^{-1} (fse differentiable for $x \in R$ (2) 2 rent points on the cur (2) 1 (2) 1 critical points of the	R. If $f(1) = 2$ and $f(4) = 8$, then (3) 1 we $y = x^4$, where the tangents (3) 2 function $f(x) = x^{\frac{1}{3}} \cdot (x - 1)^{\frac{2}{3}}$	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these is
87	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and for (1) 4 Number of difference curve is - (1) 3 The number of the	< tan^{-1} (f(b)) < tan^{-1} (fse differentiable for $x \in R$ (2) 2 rent points on the cur (2) 1 (2) 1 critical points of the	R. If $f(1) = 2$ and $f(4) = 8$, then (3) 1 we $y = x^4$, where the tangents (3) 2 function $f(x) = x^{\frac{1}{3}} \cdot (x - 1)^{\frac{2}{3}}$	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these is
87	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and for (1) 4 Number of difference curve is - (1) 3 The number of the	< tan^{-1} (f(b)) < tan^{-1} (fse differentiable for $x \in R$ (2) 2 rent points on the cur (2) 1 (2) 1 critical points of the	R. If $f(1) = 2$ and $f(4) = 8$, then (3) 1 we $y = x^4$, where the tangents (3) 2 function $f(x) = x^{\frac{1}{3}} \cdot (x - 1)^{\frac{2}{3}}$	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these is
Re	(3) $\tan^{-1} (f(a))$ (4) none of these f'(x) ≤ 2 and for (1) 4 Number of difference curve is - (1) 3 The number of the	< $tan^{-1} (f(b)) < tan^{-1} (f(b))$ differentiable for $x \in F(2) 2$ rent points on the curr (2) 1 critical points of the (2) 1 (2) 1	R. If $f(1) = 2$ and $f(4) = 8$, then (3) 1 we $y = x^4$, where the tangents (3) 2 function $f(x) = x^{\frac{1}{3}} \cdot (x - 1)^{\frac{2}{3}}$	(4) 5 drawn from the point $\left(\frac{3}{4}, 0\right)$ meet the (4) None of these is

so JEE (Main) - RRB ca RRB CR 12.8 $\int \sqrt{\frac{x^6}{a^8 + x^8}} \, dx =$ (1) $\ln |x^8 + \sqrt{a^8 + x^8}| + c$ (2) $\frac{1}{4}\ln|x^4 + \sqrt{a^8 + x^8}| + c$ (3) $\frac{1}{8}\ln|x^8 + \sqrt{a^8 + x^8}| + c$ (4) $\frac{1}{4}\ln|a^8 + \sqrt{x^8 + a^8}| + c$ $\int \cot^3 x \cdot \csc^{-8} x \, dx$ is equal to 12.9 (1) $\frac{\csc^{6}x}{8} - \frac{\csc^{6}x}{6} + c$ (2) $\frac{\sin^6 x}{6} - \frac{\sin^8 x}{8} + c$ (3) $\frac{\cos^8 x}{8} - \frac{\sin^8 x}{6} + c$ (4) None of these 12.10 If $\int \tan^7 x \, dx = f(x) + \ln |\cos x| + c$, then (1) f(x) is a polynomial of degree 8 in tan x (2) f(x) is a polynomial of degree 5 in tan x (3) $f(x) = \tan^{6}x - \frac{1}{4}\tan^{4}x + \frac{1}{2}\tan^{2}x + \ln|\cos x| + c$ (4) f(x) is a polynomial of degree 6 in tan x 12.11 $\int \frac{d(\ln x)}{x+1} =$ (2) $\ln |\ln x + 1| + c$ (3) $\ln \left| \frac{x}{x+1} \right| + c$ (4) - ln |1 + lnx| + c (1) $\ln \left| \frac{x+1}{x} \right| + c$ 12.12 If $\int \frac{x^4 + 1}{x^6 + 1} dx = A \tan^{-1} \left(x - \frac{1}{x} \right) + B \tan^{-1} x^3 + c$, then (2) A is prime number $(1) A + B = \frac{1}{3}$ (4) B is natural number (3) A is a composite number 12.13 If $\int \frac{dx}{(x^2+1)(x^2+4)} = P \tan^{-1}x + Q \tan^{-1}\frac{x}{2} + c$, then P + Q = (1) P + Q = $\frac{1}{3}$ (2) P + Q = $\frac{2}{3}$ (3) P + Q = $-\frac{1}{3}$ (4) P + Q = $\frac{1}{6}$ 12.14 Evaluate : $\int \frac{(x^2 - x + 1)}{(x^2 + 1)^{3/2}} e^x dx$ (1) $\frac{e^{x}}{\sqrt{1+x^{2}}}$ + C (2) $\frac{e^{x}}{\sqrt{1-x^{2}}}$ + C (3) $\frac{xe^{x}}{\sqrt{1+x^{2}}}$ + C (4) $\frac{e^{x}}{\sqrt{2+x^{2}}}$ + C 12.15 $\int \frac{x'}{(1-x^2)^5} dx$ is equal to : (4) $\frac{1}{8} \cdot \frac{x^{\circ}}{(1-x^2)^4}$ (3) $\frac{1}{8} \cdot \frac{x}{(1-x^2)^4}$ (1) $\frac{1}{4} \cdot \frac{x^8}{(1-x^2)^4}$ (2) $\frac{1}{8} \cdot \frac{x^4}{(1-x^2)^8}$ 48 Resonance[®].

JEE (Main) - RRB CR

12.16 If
$$\int \frac{x^4 + 1}{x(x^2 + 1)^2} dx = A \ln |x| + \frac{B}{1 + x^2} + C$$
, where C is the constant of integration, then:
(1) $A = 1$; $B = -1$
(2) $A = -1$; $B = 1$
(3) $A = 1$; $B = 1$
(4) $A = -1$; $B = -1$

12.17 The value of
$$\int x_{-} \frac{\ln \left(x + \sqrt{1 + x^2}\right)}{\sqrt{1 + x^2}} dx$$
 equals:

$$(1) \sqrt{1 + x^{2}} \ell n \left(x + \sqrt{1 + x^{2}} \right) - x + C \qquad (2) \frac{x}{2} \cdot \ell n^{2} \left(x + \sqrt{1 + x^{2}} \right)$$

$$(3) \frac{x}{2} \cdot \ell n^{2} \left(x + \sqrt{1 + x^{2}} \right) + \frac{x}{\sqrt{1 + x^{2}}} + C \qquad (4) \sqrt{1 + x^{2}} \ell n \left(x + \sqrt{1 + x^{2}} \right)$$

(2)
$$\frac{x}{2} \cdot \ell n^2 \left(x + \sqrt{1 + x^2} \right) - \frac{x}{\sqrt{1 + x^2}} + C$$

(4) $\sqrt{1 + x^2} \ell n \left(x + \sqrt{1 + x^2} \right) + x + C$

12.18 The value of
$$\int \frac{\ell \ln |x|}{x \sqrt{1 + \ell n |x|}} dx$$
 equals :
(1) $\frac{2}{3} \sqrt{1 + \ell n |x|} (\ell n |x| - 2) + C$
(3) $\frac{1}{3} \sqrt{1 + \ell n |x|} (\ell n |x| - 2) + C$

(2)
$$\frac{2}{3}\sqrt{1+\ell n|x|}$$
 ($\ell n|x|+2$) + C
(4) $2\sqrt{1+\ell n|x|}$ ($3\ell n|x|-2$) + C
12.26

12.19 The value of
$$\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$$
 is:
(1) $\frac{1}{2} \sin 2x + C$ (2) $-\frac{1}{2} \sin 2x + C$ (3) $-\frac{1}{2} \sin x + C$ (4) $-\sin^2 x + C$

12.20 The value of
$$\int \frac{x \, dx}{\sqrt{1 + x^2 + \sqrt{(1 + x^2)^3}}}$$
 is equal to:
(1) $\frac{1}{2} \, \ln\left(1 + \sqrt{1 + x^2}\right) + C$ (2) $2\sqrt{1 + \sqrt{1 + x^2}} + C$
(3) $2\left(1 + \sqrt{1 + x^2}\right) + C$ (4) none of these

$$\sqrt{1+x^2}$$
 + C (4) none of these

12.21 The value of
$$\int \frac{dx}{\sin x \cdot \sin(x+\alpha)}$$
 is equal to
(1) $\csc \alpha \, \ln \left| \frac{\sin x}{\sin(x+\alpha)} \right| + C$ (2) $\csc \alpha \, \ln \left| \frac{\sin(x+\alpha)}{\sin x} \right| + C$
(3) $\csc \alpha \, \ln \left| \frac{\sec(x+\alpha)}{\sec x} \right| + C$ (4) $\csc \alpha \, \ln \left| \frac{\sec x}{\sec(x+\alpha)} \right| + C$

An evaluation version of $\underline{\text{novaPDF}}$ was used to create this PDF file. Purchase a license to generate PDF files without this notice.

1

12.

12.2

12.22 If 5 (1) a

12.23 The

(1) (3)

12.24 TI

Level:

12.25

$$a_{aa} - J_{c} J_{c} J_{c} = f_{c} \int_{1+a}^{1} \frac{1}{1+anx} dx = tan \left(\frac{x}{2} + a\right) + b, then$$

$$(1) a = -\frac{\pi}{4}, b \in \mathbb{R}$$

$$(2) a = \frac{\pi}{4}, b \in \mathbb{R}$$

$$(3) a = \frac{5\pi}{4}, b \in \mathbb{R}$$

$$(4) none of these$$

$$(1) 2 \sin x - fn | \sec x + tan x| + C$$

$$(2) 2 \sin x - fn | \sec x - tan x| + C$$

$$(3) 2 \sin x - fn | \sec x - tan x| + C$$

$$(4) none of these$$

$$(2) 2 \sin x - fn | \sec x - tan x| + C$$

$$(5) 2 \sin x - fn | \sec x - tan x| + C$$

$$(6) 2 \sin x - fn | \sec x - tan x| + C$$

$$(7) 2 \sin x - fn | \sec x - tan x| + C$$

$$(8) 2 \sin x - fn | \sec x - tan x| + C$$

$$(9) 2 \sin x - fn | \sec x - tan x| + C$$

$$(1) \frac{5^{6^{4^{-1}}}}{(fn 5)^{3}} + C$$

$$(2) 5^{5^{4^{-1}}} (fn 5)^{2^{4^{-1}}} C$$

$$(3) \frac{5^{5^{4^{-1}}}}{(fn 5)^{3}} + C$$

$$(4) none of these$$

$$I_{evel} : II (Tough)$$

$$1225 \int \left[\log_{e}(1 + tan x) + \frac{2x}{1 + \cos 2x} + \sin 2x \right] dx \text{ is equal to}$$

$$(1) x fn (1 + tanx) + c$$

$$(2) x^{2^{4^{-1}}} fn (1 + \cos x)$$

$$(3) x fn (1 + \sec x)$$

$$(4) none$$

$$1226 Let \int \frac{x^{1/2}}{\sqrt{1 - x^{2}}} dx = \frac{2}{3} gol(x) + c then$$

$$(1) f(x) = \sqrt{x} \cdot g(x) = \ln |x - \sqrt{1 - x^{2}}|$$

$$(2) f(x) = x^{2^{2^{2}}} g(x) = \ln |x - \sqrt{1 - x^{2}}|$$

$$(3) f(x) = \sqrt{x} \cdot g(x) = \sin^{-1}x$$

$$(4) f(x) = x^{2^{3^{2}}} g(x) = \sin^{-1}x$$

$$(4) h(x) = x^{2^{3^{2}}} g(x) = \sin^{-1}x$$

$$(1) A - B = \frac{1}{9}$$

$$(2) A - B = 0$$

$$(3) A - B = -\frac{1}{9}$$

$$(4) A - B = -1/2$$

$$12.28 \int \frac{\sin^{3} x dx}{(1 + \cos^{2} x + \cos^{2} x + \cos^{2} x} t \sin^{3} x \sin^{3} \sin^{3} dx$$

$$(1) \cose^{-1} (\sec x - \cos x) + C$$

$$(2) \sec^{-1} (\sec x + \cos x) + C$$

$$(3) \sec^{-1} (\sec x - \cos x) + C$$

$$(4) \cos^{-1} (\sec x + \cos x) + C$$

$$(5) \sec^{-1} (\sec x - \cos x) + C$$

$$(6) - \frac{1}{5} (x^{-3} + 2)^{5/3} + C$$

$$(7) - \frac{1}{5} (x^{-3} + 2)^{5/3} + C$$

$$(8) - \frac{1}{5} (x^{-3} + 2)^{5/3} + C$$

$$(9) - \frac{1}{5} (x^{-3} + 2)^{5/3} + C$$

$$(1) - \frac{1}{5} (x^{-3} + 2)^{5/3} + C$$

$$(2) - \frac{1}{5} (x^{-3} - 2)^{5/3} + C$$

$$(3) - \frac{1}{5} (x^{-3} + 2)^{5/3} + C$$

$$(4) - \frac{1}{5} (x^{-3} - 2)^{5/3} + C$$

$$(5) - \frac{1}{5} (x^{-3} + 2)^{5/3} + C$$

$$(5) - \frac{1}{5} (x^{-$$

50

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

Resonance Educating for better tomorrow

1

.

1

10 JEE (Main) - RRB CR

12.30 The value of $2 \int \sin x \cdot \csc 4x \, dx$ is equal to

$$(1) \frac{1}{2\sqrt{2}} \ell n \left| \frac{1+\sqrt{2}\sin x}{1-\sqrt{2}\sin x} \right| - \frac{1}{4} \ell n \left| \frac{1+\sin x}{1-\sin x} \right| + C \quad (2) \frac{1}{2\sqrt{2}} \ell n \left| \frac{1+\sqrt{2}\sin x}{1-\sqrt{2}\sin x} \right| + \frac{1}{4} \ell n \left| \frac{1+\sin x}{1-\sin x} \right| + C \quad (3) \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2}\sin x}{1+\sqrt{2}\sin x} \right| - \frac{1}{4} \ell n \left| \frac{1+\sin x}{1-\sin x} \right| + C \quad (4) \text{ none of these}$$

$$2.31 \int \frac{(x-1)^2}{x^4 + x^2 + 1} dx$$

$$(1) \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x^2 - 1}{x\sqrt{3}} \right) - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x^2 + 1}{\sqrt{3}} \right) + C \qquad (2) \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x^2 - 1}{x\sqrt{3}} \right) - \frac{2}{\sqrt{5}} \tan^{-1} \left(\frac{2x^2 + 1}{\sqrt{3}} \right) + C$$

$$(3) \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x^2 - 1}{x\sqrt{3}} \right) + \frac{2}{\sqrt{5}} \tan^{-1} \left(\frac{2x^2 + 1}{\sqrt{3}} \right) + C \qquad (4) \tan^{-1} \left(\frac{x^2 - 1}{x\sqrt{3}} \right) + \frac{2}{\sqrt{5}} \tan^{-1} \left(\frac{2x^2 + 1}{\sqrt{3}} \right) + C$$

2.32
$$\int \frac{1 + x \cos x}{x \left(1 - x^2 e^{2 \sin x}\right)} dx$$

(1) $\ln (x e^{\sin x}) + \frac{1}{2} \ln (1 - x^2 e^{2 \sin x}) + C$
(2) $\ln (x e^{\sin x}) - \frac{1}{2} \ln (1 - x^2 e^{2 \sin x}) + C$
(3) $\ln (x e^{\sin x}) - \frac{3}{2} \ln (1 - x^2 e^{2 \sin x}) + C$
(4) $\ln (x e^{\sin x}) - \frac{3}{2} \ln (1 + x^2 e^{2 \sin x}) + C$

12.33 The integral of
$$\int \left(\frac{1}{\ln x} - \frac{1}{(\ln x)^2}\right) dx =$$

1

(1)
$$\ln (\ln x) + c$$
 (2) x $\ln x + c$

(2)
$$ln(x e^{sinx}) - \frac{1}{2}ln(1 - x^2 e^{2sinx}) + C$$

(4) $ln(x e^{sinx}) - \frac{3}{2}ln(1 + x^2 e^{2sinx}) + C$

(3) $\frac{x}{\ln x} + c$

(4) None of these

12.34 $\int e^{\sin x} (x \cos x - \sec x \tan x) dx =$ (1) $xe^{sinx} - e^{sinx}$. secx + c (3) $e^{sinx} cosx + c$

(2) $(x + \sec x)e^{\sin x}$ (4) $e^{sinx} (cosx - sec x) + c$

SECTION - II : ASSERTION & REASONING TYPE

12.35

Statement-1: $\int e^{x}(\ln \sin x + \cot x)dx = e^{x}.\ln(\sin x) + c$

Resonance Educating for better tomorro

Statement-2: $\int e^{x} \{f(x) + f'(x)\} dx = e^{x}f(x) + c$

(1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

(2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1

(3) Statement-1 is false, Statement-2 is true.

(4) Statement-1 is true, Statement-2 is false.

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

12.36

12.37

12

RRB CR

+ C

+ C

12.36

12.37

Sta

80 JEE (Main) - RRB CR

Statement 7:
$$\int \tan 3x \tan 2x \tan x \, dx = \frac{\ln |\sec 3x|}{3} + \frac{\ln |\sec 2x|}{3} + \ln |\sec x| + c$$

 $\tan 3x \cdot \tan 2x \cdot \tan x = \tan 3x - \tan 2x - \tan x$ Statement-2 :

(1) Statement-1 is true. Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

(1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1 (2) Statement-1 is false. Statement 2 is true; Statement-2 is not the correct explanation of Statement-1 (4) Statement-1 is true, Statement-2 is false.

tement-1:
$$\int \frac{1 - \cot^{2010} x \, dx}{\tan x + \cot x \cdot \cot^{2010} x} = \frac{1}{2010} \ln \left| \sin^{2010} x + \cos^{2010} x \right|^{-1}$$

Statement-2:
$$\int \frac{dx}{(x+2)^{\frac{2011}{2010}}(x-3)^{\frac{2009}{2010}}} = 402 \cdot \left(\frac{x-3}{x+2}\right)^{1/2010}$$

(1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

+ C

(2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1

(3) Statement-1 is false, Statement-2 is true.

(4) Statement-1 is true, Statement-2 is false.

12.38 Statement-1:
$$\int \frac{8^{1+x} + 4^{1-x}}{2^x} dx = \frac{2^{2+2x}}{\ell n 2} - \frac{2^{2-3x}}{3\ell n 2} + c$$
Statement-2:
$$\int \frac{3 + 2\cos x}{\sqrt{2}} dx = \frac{\sin x}{2} + c$$

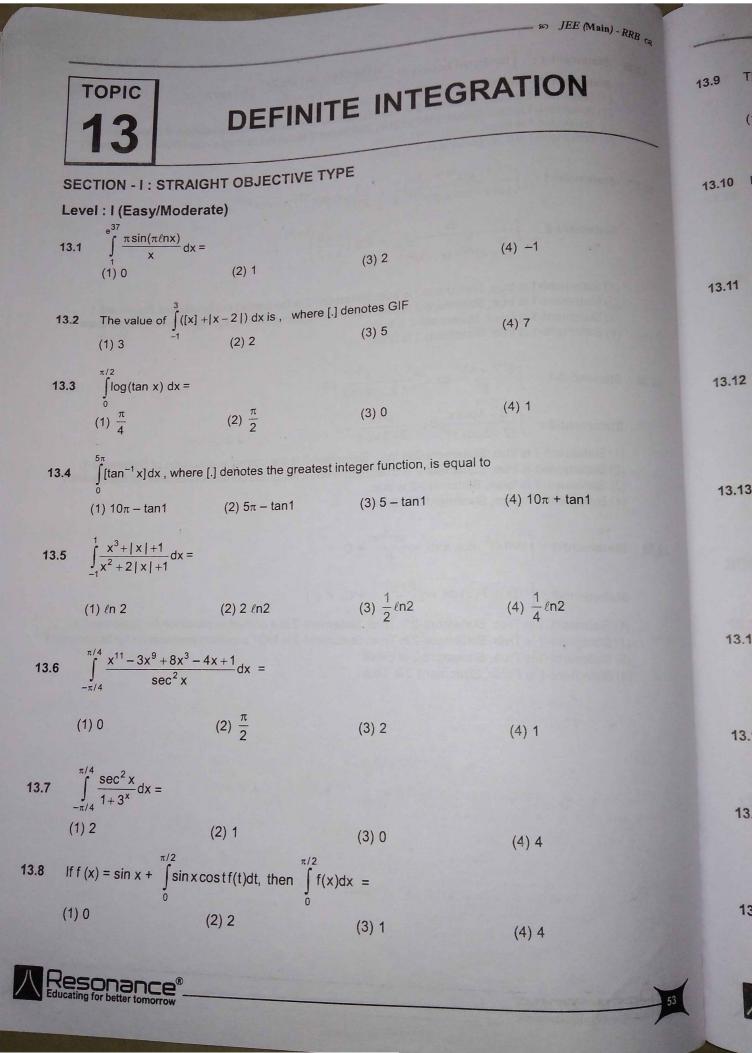
$$(2+3\cos x)^2$$
 $(2+3\sin x)^2$

(1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

(2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1

(3) Statement-1 is false, Statement-2 is true.

(4) Statement-1 is true, Statement-2 is false.


12.39 Statement-1 :
$$\int (\sin x)^5 \cos x \, dx = \frac{\sin^6 x}{6} + C$$

Statement-2 :
$$\int (f(x))^n f'(x) dx = \frac{(f(x))^{n+1}}{n+1} + C, n \in I$$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

$$\frac{1}{93} \quad \text{The greatest value of } f(x) = \int_{0}^{1} \frac{f(a \cos t - 2\sin t)}{2} dt \text{ in the interval } \begin{bmatrix} \frac{\pi}{3}, \frac{\pi}{4}, \frac{1}{3} \text{ is equal to} \\ (1) 3\sqrt{3} - 2\sqrt{2} - 1 \qquad (2) 3\sqrt{3} + \sqrt{2} - 1 \qquad (3) 3\sqrt{3} + 2\sqrt{2} + 1 \qquad (4) \text{ None of these} \\ 4340 \quad \text{Lat } 1: \mathbb{R} \to \mathbb{R} \text{ ba a continuous which satisfies } f(x) = \int_{1}^{1} f(1) dt. \text{ Then } f(x) \text{ is} \\ (1) \text{ non periodic function } (2) \text{ not an odd function } (3) f(2011) = 2011 \qquad (4) f(2011) = 0 \\ 4311 \quad \lim_{n\to\infty} \frac{1}{2n^2} \frac{1}{n^2 n^2} = \frac{1}{n^{2n^2}} = \\ (1)^n \qquad (2) \frac{1}{2} \qquad (3) = \frac{1}{2} \qquad (4) 1 \\ 4312 \quad \int_{0}^{1} \cos^n x \, dx \text{ (n is even integer) is equal to} \\ (1) \frac{\pi}{2^{2n}(n!)^2} \qquad (2) \frac{1}{2^n} \frac{n!\pi}{(n/2)!^2} (3) \frac{\pi n!}{2^{n^2}(\binom{n}{2}!)^2} \qquad (4) \text{ none of these} \\ 13.13 \quad \text{The value of integral} \\ \int_{0}^{1/2} \frac{\pi}{2^{2n}(n!)^2} \qquad (2) \frac{\pi}{2} - 1 \qquad (3) \pi + 1 \qquad (4) 2\pi - 1 \\ 13.14 \quad \int_{0}^{\frac{\pi}{2}} \frac{\pi}{3pn(x-[x])dx} = \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.15 \quad \int_{0}^{1} \frac{\pi^2 d^2 dx}{(1 + 2^2)dx} = \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.16 \quad \text{Total number of integral values of a such that } \int_{0}^{1} \frac{(9^{-2n} - 2^{-29^{-1}} dx \le 0) \text{ is equal to} \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.17 \quad \int_{0}^{1} (-1)^{|x|} dx \text{ when } n \in \mathbb{N} = \text{ in all of these } [.] \text{ denotes the greatest integer function} \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.17 \quad \int_{0}^{n} (-1)^{|x|} dx \text{ when } n \in \mathbb{N} = \text{ in all of these } [.] \text{ denotes the greatest integer function} \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.17 \quad \int_{-n}^{n} (-1)^{|x|} dx \text{ when } n \in \mathbb{N} = \text{ in all of these } [.] \text{ denotes the greatest integer function} \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.17 \quad \int_{-n}^{n} (-1)^{|x|} dx \text{ when } n \in \mathbb{N} = \text{ in all of these } [.] \text{ denotes the greatest integer function} \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.17 \quad \int_{-n}^{n} (-1)^{|x|} dx \text{ when } n \in \mathbb{N} = \text{ in all of these } [.] \text{ denotes the greatest integer function} \\ (1) 0 \qquad (2) 1 \qquad (3) 9 \qquad (4) 7 \\ 13.17 \quad \int_{-n}^{n} (-1)^{|x|} dx \text{ when } n \in \mathbb{N} = \text{ in all of these } [.] \text{ denotes the greates$$

- RRB

(

$$13.19 \quad \text{Let } F(x) = \int_{-\infty}^{x^2} \frac{2}{2} 2(5-1) dt, \text{ if M is the maximum value of } F(x) then the sum of the digits of M is
(1) 6 (2) - 6 (3) 5 (4) 0
$$13.19 \quad \text{if } F(x) = \frac{\sin^2}{(1-e^{-4x})\sin^2 2x}, \text{ then } \int_{-\infty}^{x^2} \frac{1}{(x)} dx^{-1}}{(x)^{\frac{1}{2}}} (4) 0$$

$$13.29 \quad \text{if } F(x) = \frac{\sin^2}{(1-e^{-4x})\sin^2 2x}, \text{ then } \int_{-\infty}^{x^2} \frac{1}{(x)^2} dx^{-1}}{(x)^{\frac{1}{2}}} (4) 0$$

$$13.29 \quad \text{if } e^{-x} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0, \text{ where } C_x = 0, \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0, \text{ where } C_x = 0, \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0, \text{ where } C_x = 0, \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0, \text{ where } C_x = 0, \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0, \text{ where } C_x = 0, \frac{1}{2} + \frac{1}{2}$$$$

RRB CR - so JEE (Main) - RRB ca Let f (x) be differentiable function such that $f(x) = x^2 + \int e^{-t}f(x-t)dt$. Then 13.27 (1) f (x) is decreasing for $x \in (-\infty, -2] \cup [0, \infty)$ (2) f (x) is increasing for $x \in [-2, 0]$ (3) f (1) = $\frac{1}{3}$ (4) f (1) = $\frac{4}{2}$ $\int [\tan x] dx$, (where [.] denotes the greatest integer function) is equal to . 13.28 (1) irrational number (2) positive real number (3) rational number (4) negative real number $\int_{0}^{\pi/4} (\pi x - 4x^2) \ell n(1 + \tan x) dx =$ 13.29 (1) $\frac{\pi^3}{192} \ell n2$ (2) $\frac{\pi^3}{191} \ell n2$ (3) $\frac{\pi^3}{192} \ell n3$ (4) $\frac{\pi^2}{192} \ell n2$ **13.30** Let $f(x) = x + \sin x$ and g(x) be the inverse function of f(x). Then $\int g(x) dx =$ (1) $\frac{\pi^2}{2} + 2$ (2) $\frac{\pi^2}{2} - 3$ (3) $\frac{\pi^2}{2} - 2$ (4) $\frac{\pi^2}{2}$ 13.31 If $\int_{0}^{1} \tan^{-1} x \, dx = P$ and $\int_{0}^{\pi/4} \tan^{-1} \left(\frac{1}{\tan^2 \theta - \tan \theta + 1} \right) \sec^2 \theta \, d\theta = KP$, then find the value of K. (3) 7 (2) 3 (1) 5 (4) 2 **SECTION - II : ASSERTION & REASONING TYPE 13.32** Statement -1 : $\int_{0}^{1} \ell n(1+x) dx < \frac{1}{2}$ Statement -2: In (1 + x) < x in (0, 1) (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True

3.33 Let
$$f(x) = \int_{-\infty}^{x} (t^2 - t + 2) (t^2 - t - 2) (t^2 - t - 6) (t^2 - t - 12) dt$$

Statement 1 : The sum of values of x where f(x) is maximum is – 1 Statement 2 : If f'(3) = 0 then f(x) has either maximum or minimum at x = c and x = c is not an inflec-

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

esonance

80 JEE (Main) - RRB (20

13.34 Statement 1:
$$\int_{-\pi/2}^{\pi/2} \left(\frac{e^{|\sin x|} \cos x}{1 + e^{\tan x}} \right) dx = 1 - e$$

Statement f 2 : If f (x) is an even function then $\int_{0}^{\pi/2} f(x) dx = 2 \int_{0}^{\pi/2} f(x) dx$

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (2) Statement is the statement of the state (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

3.35 Statement -1 : Let
$$I_n = \int_0^1 (1-x^5)^n dx$$
. Then $\frac{I_{10}}{I_{11}} = \frac{55}{54}$

Statement-2 : If u(x) and v(x) are differentiable functions then $\int uv \, dv = u \int v \, dx - \int \left(\frac{du}{dx} \int v \, dx \right) dx$.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Statement 1 : $\int_{0}^{1} \frac{\ell n x}{1+x} dx = -\int_{0}^{1} \frac{\ell n (1+x)}{x}$ 13.36

Statement 2 : If f(t) is an odd function then $\phi(x) = \int f(t) dt$ is an even function

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

13.37 Statement 1:
$$\int_{-\infty}^{0} \{x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 5 + \tan^7(x+1)\} dx = 0$$

Statement 2 : $\int_{-\infty}^{a} \frac{f(\sin x)}{f(\cos x) + f(\sin^2 x)} dx$ where f is an odd function = 0

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Purchase a license to generate PDF files without this notice.

resonar Educating for better tomorrow

14.

14.4

TO

SECT

Level

14.1

14.2

14.3

_			UNDER	JURVE
SEC	TION - I : STRAIG	HT OBJECTIVE T	YPE	
	The area bounded b			
14.1		by the curve $2x^2 + y^2 =$		
	(1) *	(2) √2π	(3) $\frac{\pi}{2}$	(4) 2π
4.2	The area bounded b	by the curve $y^2 (1 - x)$	$= x^{2} (1 + x)$ between x = 0	, x = 1 is -
	(1) $\frac{\pi}{2}$ + 2	π	(3) π + 2	
4.3	The area bounded b	y the curve $y = x e^{-x^2}$, $y = 0$ and the maximum	n ordinate is
			$(3) \ \frac{1}{2} \left(1 - \frac{1}{\sqrt{e}} \right)$	
4.4	The area enclosed b	between the curve y =	sin ² x and y = cos ² x , 0 \leq	$x \le \pi$ is -
	(1) 1 sq. unit	(2) $\frac{1}{2}$ sq. units	(3) 2 sq. units	(4) None of these
4.5	The area bounded l	by y = log _e x, x-axis	and the ordinate x = e is	given by
	(1) 4 sq. units	(2) $\frac{1}{2}$ sq. units	(3) 1 sq. units	(4) none of these
1.6	The area bounded l	by the curve y = sin	-1x and the lines x = 0,	$ y = \frac{\pi}{2}$.
	(1) 2 sq. units	(2) 4 sq. units	(3) 8 sq. units	(4) 16 sq. units
.7	The area of the figu	re bounded by the	straight line $x = 0, x = 2$	and the curves $y = 2^x$, $y = 2x - x^2$ i
	$(1)\left(\frac{4}{\ln 2}-\frac{8}{3}\right)$ sq. u		$(2)\left(\frac{4}{\ln 2}+\frac{8}{3}\right)$	
	$(3)\left(\frac{8}{\ln 3}-\frac{4}{3}\right)$ sq. u	inits	$(4)\left(\frac{3}{\ell n 2}-\frac{4}{3}\right) s$	sq. units
8	The area bounded b	by the curve $y = x - (2) ^2 g_1$, units		(4) 8 sq. units
0	The area of the real	ion R = {(x, y) : x	$ \leq y $ and $x^2 + y^2 \leq 1$	π
	(1) $\frac{3\pi}{2}$ sq. units	(2) $\frac{5\pi}{8}$ sq. unit	s (3) $\frac{\pi}{2}$ sq. units	(4) $\frac{\pi}{8}$ sq. units

Cag

	50 JEE (Main) - RRB G	
and the second second second	ecordinate axes and encloses an area of	14.23
14.10	If $y = f(x)$ make positive intercepts of 2 and 1 unit on x and y coordinate axes and encloses an area of 3	
	$\frac{1}{3}$ square units with the axes, then $ x f'(x) dx$ is 3	
		14.24
14.11	(1) $\frac{1}{2}$ (2) 1 (2) $\frac{1}{2}$ (2) 1 (2) $\frac{1}{2}$ (2) 1 (2) $\frac{1}{4}$ The area of one curvilinear triangle formed by the curves $y = \sin x$, $y = \cos x$ and x-axis (1) $\left(2 + \sqrt{2}\right)$ sq. units (2) $2 - \sqrt{2}$ sq. units (3) $\left(\sqrt{2} - 2\right)$ sq. units (4) none of these (1) $\left(2 + \sqrt{2}\right)$ sq. units (2) $2 - \sqrt{2}$ sq. units (3) $\left(\sqrt{2} - 2\right)$ sq. units (4) none of these (1) $\left(2 + \sqrt{2}\right)$ sq. units (2) $2 - \sqrt{2}$ sq. units (3) $\left(\sqrt{2} - 2\right)$ sq. units (4) none of these (1) $\left(2 + \sqrt{2}\right)$ sq. units (2) $2 - \sqrt{2}$ sq. units (3) $\left(\sqrt{2} - 2\right)$ sq. units (4) none of these (1) $\left(2 + \sqrt{2}\right)$ sq. units (2) $2 - \sqrt{2}$ sq. units (3) $\left(\sqrt{2} - 2\right)$ sq. units (4) none of these (1) $\left(2 + \sqrt{2}\right)$ sq. units (2) $\left(2 - \sqrt{2}\right)$ sq. units (3) $\left(\sqrt{2} - 2\right)$ sq. units (4) none of these (1) $\left(2 + \sqrt{2}\right)$ sq. units (2) $\left(2 - \sqrt{2}\right)$ sq. units (3) $\left(\sqrt{2} - 2\right)$ sq. units (4) none (1) $\left(2 + \sqrt{2}\right)$ sq. units (4) $\left(2 + \sqrt{2}$	Lev
11.10	$(1) (2+\sqrt{2}) $ sq. units $(2) 2 \sqrt{2} $ sq. $(2) = \sqrt{2} $ sq. $(2$	
14.12	The area bounded by the curve $y = x x $, x-axis and theorem (4) $\frac{4}{5}$ sq. units (1) $\frac{4}{3}$ sq. units (2) $\frac{2}{3}$ sq. units (3) $\frac{1}{6}$ sq. units (4) $\frac{4}{5}$ sq. units	14.2
14.13	The area of the main him between the line $x - y + 2 = 0$ and the curve $x = \sqrt{y}$	14.
	(1) $\frac{4}{3}$ sq. units (2) $\frac{2}{3}$ sq. units (3) $\frac{5}{3}$ sq. units (4) $\frac{10}{3}$ sq. units	
14.14	The area analoged between the survey $y^2 = x$ and $y = x $	
	(1) $\frac{1}{6}$ sq. units (2) $\frac{2}{3}$ sq. units (3) $\frac{5}{3}$ sq. units (4) $\frac{1}{3}$ sq. units	14
14.15	The area bounded by the parabola $x = y^2$ and the straight line $y = 4$ and y-axis	
	(1) $\frac{1}{6}$ sq. units (2) $\frac{64}{3}$ sq. units (3) $\frac{5}{3}$ sq. units (4) $\frac{1}{3}$ sq. units	
14.16	The area inside the parabola $5x^2 - y = 0$ but outside the parabola $2x^2 - y + 9 = 0$ is	6.94 A
	(1) $12\sqrt{3}$ (2) $6\sqrt{3}$ (3) $8\sqrt{3}$ (4) $8\sqrt{3}$	
14.17	The area of the region on plane bounded by max $(x , y) \le 1$ and $xy \le \frac{1}{2}$ is	
((1) $1/2 + \ell n 2$ (2) $3 + \ell n 2$ (3) $31/4$ (4) $1 + 2 \ell n 2$	
	The area bounded by $y = x^2$, $y = [x + 1]$, $x \le 1$ and the y-axis is (1) 1/3 (2) 2/3 (3) 1 (4) 7/3	
	The area contained between the curve $xy = a^2$, the vertical line $x = a$, $x = 4a$ ($a > 0$) and $x-ax$ (1) $a^2 \ln 2$ (2) $2a^2 \ln 2$ (3) $a \ln 2$ (4) $2a \ln 2$	tis is
4.20 T	The area of the closed figure bounded by the curves $y = \sqrt{x}$, $y = \sqrt{4-3x}$ and $y = 0$ is:	
(*	(1) $\frac{4}{9}$ (2) $\frac{8}{9}$ (3) $\frac{16}{9}$ (4) none	
1.21 T	The area bounded by the curve $x^2 = 4y$, x-axis and the line $x = 2$ is	
(1	1) 1 (2) $\frac{2}{3}$ (3) $\frac{3}{2}$ (4) 2	
. 22 Tł	The area bounded by the parabola $y = 4x^2$, $x = 0$ and $y = 1$, $y = 4$ is	
(1	1) 7 (2) $\frac{7}{2}$ (3) $\frac{7}{3}$ (4) $\frac{7}{4}$	
RE	esonance"	Yes

- 80 JEE (Main) - RRB CR - RRB CR The area bounded by the curve $y = \frac{1}{x^2}$ and its asymptote from x = 1 to x = 3 is n area of 14.23 $(2)\frac{2}{3}$ (1) 1 $(4) \frac{1}{6}$ (3) $\frac{1}{2}$ The area bounded by the curve $y^2 = 4x$ and the line 2x - 3y + 4 = 0 is $(2) \frac{2}{3}$ $(4) \frac{5}{3}$ (3) $\frac{4}{3}$ (1) 3 Level : II (Tough) 14.25 If the curve $y = ax^{1/2} + bx$ passes through the point (1, 2) and lies above x-axis for $0 \le x \le 9$ and the area enclosed by the curve, the x-axis and the line x = 4 is 8 sq. units, then (4) a = 1, b = -1(1) a = 1, b = 1 (2) a = 3 b = -1 (3) a = 3, b = 1The area enclosed by the curve $x = a \sin^3 t$ and $y = a \cos^3 t$ is given by 14.26 (2) $12a^2$, $\int_{0}^{1} \cos^2 t \sin^4 t \, dt$ (1) $12a^2 \int_{0}^{\pi/2} \cos^4 t \sin^2 t dt$ (3) 2 $\int^{a} (a^{2/3} - x^{2/3})^{3/2} dx$ (4) all of these The parabola $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinates axes. If S₁, S₂, S₃ are the areas of these parts numbered from top to bottom, respectively, then-14.27 (2) $S_1 : S_2 : S_3 = 1 : 2 : 3$ (4) $S_1 : S_2 : S_3 = 1 : 2 : 4$ (1) $S_1 : S_2 : S_3 = 1 : 1 : 1$ (3) $S_1 : S_2 : S_3 = 3 : 2 : 1$ If A_i is the area bounded by $|x - a_i| + |y| = b_i$ i $\in N$, where $a_{i+1} = a_i + \frac{3}{2}b_i$ and $b_{i+1} = \frac{b_i}{2}$, $a_1 = 0$ and $b_1 = \frac{b_i}{2}$. 14.28 (2) A₃ = 256 32, then (4) $\lim_{n \to \infty} \sum_{i=1}^{n} A_i = \frac{4}{3} (16)^2$ $(1) A_3 = 64$ (3) $\lim_{n \to \infty} \sum_{i=1}^{n} A_i = \frac{8}{3} (32)^2$ Find the area enclosed between the curve $y^2 (2a - x) = x^3$ and the line x = 2a above x-axis (1) $\frac{5\pi a^2}{2}$ (2) $\frac{3\pi a^2}{2}$ (3) $\frac{\pi a^2}{2}$ (4) $\frac{3\pi a}{2}$ 14.29 The area enclosed by the curve $y = \sqrt{4 - x^2}$, $y \ge \sqrt{2} \sin \frac{\pi x}{2\sqrt{2}}$ and x-axis is divided by the y-axis in the 14.30 (1) $\frac{2\pi^2}{2\pi + \pi^2 - 12}$ (2) $\frac{2\pi^2}{2\pi + \pi^2 - 8}$ (3) $\frac{\pi}{2\pi + \pi^2 - 8}$ (4) $\frac{2\pi^2}{\pi + \pi^2 - 8}$ The area cut off a parabola by any double ordinate is k times the corresponding rectangle contained by that double ordinate and its distance from the vertex, then find the value of k. (4) 5/2 14.31 The slope of the tangent to the curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2). Then find the area of the region bounded by the curve, the x-axis and the line x = 1. 14.32 $(4) \frac{2}{5}$ $(3)\frac{1}{6}$ $(2)\frac{5}{6}$ (1) 5 60 esonance

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

is

por JEE (Main) - RRH ca TOPIC SECTION - II : ASSERTION & REASONING TYPE Statement-1 : The area bounded by parabola $y = x^2 - 4x + 3$ and y = 0 is $\frac{4}{3}$ sq. units Statement-2 : The area bounded by the curve $y = f(x) \ge 0$ and y = 0 between the ordinates x = a and $x \ge 0$. 14.33 SECTION Level:1(b, where $b \ge a$ is f(x) dx Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1
 Statement 1 is True (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
 (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 So 15.1 (1) (3) Statement -1 is True, Statement -2 is False (4) Statement -1 is False, Statement -2 is True Statement-1 : The area of the plane region bounded by the curve $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is $\frac{4}{3}$ TH 15.2 14.34 Statement-2 : The area bounded by the curve $y = 2x - x^2$ and the straight line y = -x is Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1
 Statement -1 is True - 2 is True - 2 is True - 2 is a correct explanation for Statement -1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 (3) Statement 4 is 177 (3) Statement -1 is True, Statement -2 is False 15.3 (4) Statement -1 is False, Statement -2 is True Statement-1 : Area bounded by parabola $y = x^2 - 4x + 3$ and y = 0 is 4/3 sq. units. Statement-2 : Area bounded by curve $y = f(x) \ge 0$ and y = 0 between ordinates x = a and x = b (b > a) is 14.35 15.4 f(x) dx(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. 15.5 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1 : Area bounded by y = tanx, y = tan²x in between x $\in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ is equal to $\left(\frac{\pi}{4} + \ln\sqrt{2} - 1\right)$. 15.6 14.36 Statement-2: Area bounded by y = f(x) and $y = g(x) \{f(x) > g(x)\}$ between x = a, x = b is $\int (f(x) - g(x)) dx$. (b > a)(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. 15.7 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1 : Area formed by curve y = cos x with y = 0, x = 0 and x = $\frac{3\pi}{4}$ is $2 - \frac{1}{\sqrt{2}}$ 14.37 15.8 **Statement-2** : Area of curve y = f(x) with x-axis between ordinates x = a and x = b is f(x) dx (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Resonance

- RRI

and

nt -1 nt-1

43

t -1 ent-1

> a)

-1

-1)

) dx

1

80 JEE (Main) - RRB CR The solution of the differential equation $(1 + y^2)dx = (tan^{-1} y - x) dy$ is 15.9 15.20 (2) $xe^{tan^{-1}y}(tan^{-1}y+1) = c$ (1) $xe^{tan^{-1}y} = e^{tan^{-1}y}(tan^{-1}y-1) + c$ (3) $xe^{tan^{-1}y}(tan^{-1}y-1) = c$ (4) None of these The solution of the differential equation $(2x - 10y^3)\frac{dy}{dx} + y = 0$ is 15.10 Leve (4) none of these (2) $xy^2 + 2y^5 = c$ (3) $xy^2 = 2y^5 + c$ (1) $xy^2 = y^5 + c$ 15.21 If m and n are the order & degree of the equation $\left(\frac{d^2y}{dx^2}\right)^5 + 4 \cdot \frac{\left(\frac{d^2y}{dx^2}\right)^5}{\frac{d^3y}{dx^3}} + \frac{d^3y}{dx^3} = x^2 - 1$, then 15.11 15.22 (4) n = 5, m = 2(1) m = 3, n = 2(3) m = 2, n = 3(2) n = 2, m = 515.12 The differential equation of the family of all parabolas whose axis is x-axis are of (4) fourth degree (1) first degree (3) third degree (2) second degree **15.13** The solution of the equation $\frac{dy}{dx} = e^{y+x} + e^{y-x}$ is (1) $e^{y} (e^{x} + e^{-x} + c) = -1$ (3) $e^{x} (e^{x} - e^{-x} + c) = -1$ (2) $e^{y} (e^{x} - e^{-x} + c) = -1$ (4) $e^{x+y} (e^{2x} + ce^{x} - 1) = -1$ 15.2 15.14 The solution of the differential equation (x + y)dy - (x - y) dx = 0 is (1) $y^2 + 2xy + x^2 = k$ (2) $y^2 + 2xy - x^2 = k$ (3) $y^2 - 2xy + x^2 = k$ (4) none of these The solution of the differential equation $\frac{xdy}{dx} = y - x \tan\left(\frac{y}{x}\right)$ is 15.15 15. (1) $x \sin^{-1}\left(\frac{y}{x}\right) + c = 0$ (2) $x \sin y + c = 0$ (3) $x \sin\left(\frac{y}{x}\right) = 0$ (4) $y = x \sin^{-1}\left(\frac{c}{x}\right)$ The orthogonal trajectory of $x^{2/3} + y^{2/3} = a^{2/3}$ is (1) $y^{4/3} + x^{4/3} = c$ (2) $y^{4/3} - x^{4/3} = c$ (3) $x^{2/3} - y^{2/3} = c$ (4) $(xy)^{4/3} = c$ 15.16 A curve passes through (2, 0) and the slope of the tangent at P(x, y) is equal to $\frac{(x+1)^2 + y - 3}{x+1}$ then the 15.17 equation of the curve is (1) $y = x^2 - 2x$ (2) $y = x^3 - 8$ (3) $y^2 = x^2 + 2x$ (4) none of these The solution of the differential equation $\frac{dy}{dx} = -\left(\frac{x-2y+5}{2x-y+4}\right)$ is 15.18 (1) $(x + y - 1)^3 = A(x - y + 3)$ (3) $(x + y - 3) = C(x - y + 1)^3$ (2) $(x + y + 3) = B(x + y - 1)^3$ (4) $(x + y - 1)^3 = D(x + y - 3)$ **15.19** If $\frac{xdy}{dx} + y = x \frac{f(xy)}{f'(xy)}$ then f(xy) is equal to (1) $\text{ke}^{x^2/2}$ (2) $ke^{y^2/2}$ (3) $ke^{(xy)^2/2}$ (4) ke^{xy/2}

- so JEE (Main) - RRB ca

RB Ca The differential equation $y'' + \frac{2}{1-y}(y')^2 = 0$ 15.20 (1) is linear (2) has a solution $y = e^x + c_1$ (3) has a solution $y = c_1 - c_2 x^2$ (4) has a solution y = $\frac{x+c_1}{x+c_2}$ Level: II (Tough) **15.21** Solution of the differential equation $x^2y \frac{d^2y}{dx^2} + \left(x\frac{dy}{dx} - y\right)^2 = 0$ is (1) $y = \sqrt{x(c_2x^2 + 2c_1)}$ (2) $y = \sqrt{x(c_1 - 2c_2x^2)}$ (3) $y = \sqrt{x(c_2x - 2c_1)}$ (4) $y^2 = \sqrt{x(c_2x + 2c_1)}$ The solution of the differential equation $(1 + y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$ is 15.22 (1) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + c$ (2) $(x - 2) = ce^{tan^{-1}y}$ (4) $xe^{tan^{-1}y} = tan^{-1}y + c$ (3) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$ The solution of the differential equation $\frac{x}{x^2 + y^2} dy = \left(\frac{y}{x^2 + y^2} - 1\right) dx$ is 15.23 (1) $y = x \cot(c-x)$ (2) $\cos -1\left(\frac{y}{x}\right) = (-x + c)$ (3) $y = x \tan(c-x)$ (4) $\left(\frac{y^2}{x^2}\right) = x \tan(c-x)$ Solution of the differentiable equation 15.24 $x = 1 + xy \left(\frac{dy}{dx}\right) + \frac{(xy)^2}{2!} \left(\frac{dy}{dx}\right)^2 + \frac{(xy)^3}{3!} \left(\frac{dy}{dx}\right)^3 + \dots \text{ is }$ (2) $v = (\log e^{x})^{2}$ (1) $y = \log e^{x} + c$ (3) $y = \pm \sqrt{(\log e^{x})^{2} + 2c}$ (4) $xy = x^{y} + k$ Solution of the differentiable equation $\left(\frac{x+y-1}{x+y-2}\right) \frac{dy}{dx} = \left(\frac{x+y+1}{x+y+2}\right)$ when y = 1 , is 15.25

(1)
$$\log \left| \frac{(x-y)^2 - 2}{2} \right| = 2 (x+y)$$
 (2) $\log \left| \frac{(x-y)^2 + 2}{2} \right| = 2 (x-y)$
(3) $\log \left| \frac{(x+y)^2 + 2}{2} \right| = 2 (x-y)$ (4) None of these

SECTION - II : ASSERTION & REASONING TYPE

Statement-1: The differential equation $y^3 dy + (x + y^2) dx = 0$ becomes homogeneous if we put $y^2 = t$ Statement-2: All differential equation of first order and first degree becomes homogeneous if we 15.26 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

e

	50 JEE (Main) - RRB (2	
-	Statement-1 : The integrating factor of the differential equation in $\frac{dy}{dx}(x\ell nx) + y = 2\ell nx$ is ℓnx $\frac{d^2y}{dx^2} + y = 0$ is $y = A \sin (x + B)$	TO
	utforential equation of dx	
45 0	Statement-1 : The integrating factor of the differential equation $\frac{d^2y}{dx^2} + y = 0$ is $y = A \sin (x + B)$ Statement-2 : The general solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$ is $y = A \sin (x + B)$ (4) Other work of the solution of the differential equation for Statement-1.	
15.2	Statement-1: The integrating $\frac{y}{y} = y = 0$ is $y = A \sin (x + B)$	
	the differential equation dx ²	
	Statement-2: The general solution of the unit	
	2 is True; Statement-2 is NOT a correct explanation of olderinent-1	
	Statement-2: The general solution of the differential equation dx ² (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False	SEC
	(2) Statement-1 is True, Statement-2 is False	
	 (2) Statement-1 is True, Statement-2 is False (3) Statement-1 is True, Statement-2 is True 	Lev
	(4) Statement-1 is Faise, Statement 2	46.4
15.28	Statement 1. The curve $y = cx^2$, c being any arbitrary con-	10.
13.20	instarty is for Statement 4	
	Statement - 2 : As above curves traces orthogonal traject is a correct explanation for Statement	
	 Statement – 1: The curve y = cx , o ben d angle. Statement – 2: As above curves traces orthogonal trajectory. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False 	
	(2) Statement-1 is True, Statement-2 is True; Statement 2	16.
		10.
	(4) Statement-1 is False, Statement-2 is True Statement – 1 : A ray of light from origin after reflection at the point $P(x,y)$ of any curve becomes parellel to $x^2 = 2x + 1$	
	to entropy at the point P(x,y) of any output field	
15.29	Statement – 1 : A ray of light from origin after reflection by $y^2 = 2x+1$ x-axis, the equation of curve may be $y^2 = 2x+1$	
	Statement – 1 : A ray of light from origin and reflection by $y^2 = 2x+1$ x-axis, the equation of curve may be $y^2 = 2x+1$ Statement – 2 : A ray of light parallel to axis after reflection from parabolic mirror always passes through the	
	(1) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (2) Statement 1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1	16
	(1) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1	
	(Z) Statement-1 is true, Statement-Z is true,	
	(3) Statement-1 is true, Statement-2 is the state	
	(4) Statement-1 is False, Statement-2 is True	
15.30	Statement - 1 : The differential equation of the family of hyperbolas with asymptotes as the line	1
15.50		
	$x + y = 1 & x - y = 1 \text{ is } (x-1) = y \frac{dy}{dx}$	
	x + y - 1 d x - y - 1 is (x - 1) - y dx	1
	Statement – 2: As , the eccentricity of the rectangular hyperbola is $\sqrt{2}$.	-
	(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.	
	(1) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1	1
	(2) Statement 1 is True, Statement 2 is Folge	
	(3) Statement-1 is True, Statement-2 is False	
	(4) Statement-1 is False, Statement-2 is True	

16.7

16.8

16.

16

16

	16	QUADR	ATIC EQU	JATION
SEC	TION - I : STRAIGHT		E	The second second
	el : I (Easy/Moderate			
16.1				ose roots are (α + p) ⁻² are
	(1) $q^2x^2 - (p^2 - 2q) x +$ (3) $q^2x^2 + (p^2 - 2q) x +$	1 = 0 1 = 0	(2) $x^2 - (p^2 - 2q) x$ (4) None of these	$+ q^2 = 0$
16.2	If one root of equation of B is -	x² + Ax + 12 = 0 is 4 a	nd the root of equation x	$x^{2} + 2Ax + B = 0$ are equal then value
	(1) 49	(2) 4	(3) 4 29	(4) $\frac{49}{4}$
16.3	If roots of the euation	$0x^{2} + 2qx + r = 0$ and 0	$qx^2 - 2\sqrt{pr}x + q = 0$ ar	e simultaneously real, then
	(1) $p = q, r \neq 0$	(2) $2q = \pm \sqrt{pr}$	$(3) \frac{p}{q} = \frac{q}{r}$	(4) q = r ≠ 0
16.4	$(1)(-\infty, -10)$	(2) (− 4, ∞)	(3) (-0, -1)	then 1 then λ lies completely in intervel (4) (- ∞ , 0)
16,5	If equation $(p^2 + p - 1)$ (1) 3	$(2p^2 - (2p^2 - 4)x - (3p^2))(2) - 1$	+ 9p + 3) = 0 is identity (3) 1	in p, then find the value of x - (4) – 3
16.6	If equation (r ² – 2r + 1 (1) 1	$(x^{2} + (r^{2} - 3r + 2)x - (r^{2})x - (r$	$r^2 + 4r + 3) = 0$ is ident (3) - 1	ty in x then find value of r - (4) not possible
16.7	If a B are roots of qua	dratic equation 2x ² -	5x - 7 = 0, then equati	on whose roots are $\displaystyle rac{lpha}{eta}$ and $\displaystyle rac{eta}{lpha}$ is
10.7	(1) $x^2 + 53x + 14 = 0$ (3) $14x^2 + 25x + 14 = 14$	0	(2) 14 x² + 53x + (4) none of these	14 = 0 e
16.8	If ℓ , m, n are real and (1) real and equal	positive and $\ell \neq m$, the set of	nen roots of (ℓ – m) x² (2) Imaginary (4) none of thes	$-5(\ell + m)x - 2(\ell - m) = 0$ are
	(3) real and unequal	$ax^2 + bx + c = 0$ are		f the equation $(4c + 2b + a)x^2 - 2(a - b)x^2 - 2(a - b)$
16.9	+a = 0 are -	(2) imaginary	(3) real and une	equal (4) none of these
16.10	If a is purely imaginary			
16.11	If one root of equation (1) 3	$x^{2} + 3x + 4 = 0$ and (2) 6	2x² + ax+ 8 = 0 is com (3) 4	mon, then value of a is - (4) 2

1	6.12 Graph of qu	uadratic expression $y = ax^2 +$	bx + c is given, then		16.25 Roo (1)
		y ↑			16.26 If c
					10-
	-3	→×			(1 16.24 V
	(1) a + b + c (3) (4a + c)²		(2) (4a + c)² – (2b (4) 9a – 3b + c >) ² < 0 0	10.21
16	.13 Find interval	of x which satisfying $x^2 - 2^{-3}$	$< x^{2} + x + 3 < (x - 2)^{2} - 6$	(4) None of these	16.28
16	.14 Value of λ so (1) (-2, 2)	o that roots of quadratic equa	ation $4x^2 - (\lambda + 2)x + (\lambda^2 - 5)$	λ + 6) = 0 are of opposite sign – (4) None of these has one root lies between 1 and 2	SECTI
16.	15 Value of λ so	that quadratic equation x^2 + root lies between 2 and 3 –	$(\lambda + 1)\mathbf{x} + (\lambda^2 - 3\lambda - 0)^{-1}$		and 16.29
	(1) (0, 1)	(2) $(1-\sqrt{5}, 1+\sqrt{5})$	(5) (3) (1, 1 + $\sqrt{5}$)	(4) ¢	
16.	(1) (2, 4)	2xy - 4y + 8 = 0 then pair (x (2) (8, 4)	(3) (4, 2)	(4) none of these	
1/6.1	17 If x + y and 2 (1) (-2, 2)	$2x - y$ are factors of $\lambda x^3 - x^2 y$ (2) (2, 2)	y + µ xy² + y³, x, y ≠ 0, the (3) (2,-2)	n pair (λ, μ) is - (4) none of these	16.30
16.1	18 Value of x sa (1) (1, 3)	atisfying x – 2 – 3 < 4 ar (2) (–2, 1)	re - (3) (3, 6)	(4) (-2, 6)	120 - 3 -4
16/1		that equation $(x^2 - 2x)^2 - 3($			
	(1) (-∞, -6)	$(2) \left\{\frac{1}{4}\right\}$	$(3) (-\infty, -6) \cup \begin{cases} \frac{2}{4} \\ \frac{2}{4} \end{cases}$	$\left\{\frac{1}{2}\right\}$ (4) none of these	16.31
Lev	el : II (Tough)				
16.20	If α , β are root (1) 3	ts of $x^2 + px + 7 = 0$ and γ , (2) 11	δ are roots of $x^2 + px - 4$ (3) - 11	= 0 then value of $(\alpha - \gamma) (\alpha - \delta)$ (4) - 3	is
16.21		of $x^2 - 6x + 4 = 0$ then valu	e of $(\alpha - 6)^{-2} + (\beta - 6)^{-2}$	is –	
	(1) $\frac{7}{4}$	(2) 2	(3) 4	(4) $\frac{7}{2}$	16.32
16.22	If a ≠ 0 and one a is	e root of the equation $2x^2 + 3$	3x + a = 0 is double of one	root of equation $2x^2 + 9x + 4a =$	0, then
	(1) 2	(2) 3	(3) 1	(4) – 1	14/1 1/10
6.23	Range of quadr (1) (-12, 23)	ratic expression $y = x^2 + 6x$ (2) (- 13, 23)	(-4, x ∈ (-4, 3) is (3) [-13, 23]	(4) [-13, 23)	
6.24	Value of x which	h satisfy $\log_{1/4} [\log_2 (x + 2)]$		< 2 is -	
	(1) (-1, 0)	(2) (-1, 0) $\cup \left(\frac{1}{2}, \right)$	$\left(\frac{5}{2}\right)$ (3) $\left(\frac{1}{2},\frac{5}{2}\right)$	(4) φ	West The

	Roots of the cu (1) 27	ubic equation x³ – 9x² + px (2) 9	(- 27 = 0 are positive & re (3) 18	al then value of p is - (4) 36
16.26	If α, β, γ are roo	ots of $x^3 - 5x^2 + x - 2 = 0$,	then value of $\left(\frac{\alpha+2}{\alpha-2}\right)\left(\frac{\beta}{\beta}\right)$	$\left(\frac{+2}{\gamma-2}\right)\left(\frac{\gamma+2}{\gamma-2}\right)$ is -
/	(1) 2	(2) $\frac{1}{2}$	(3) $\frac{3}{8}$	(4) $\frac{8}{3}$
16.21	Value of k so th	hat equation $(x^2 - 2x)^2 - 3$	$3(x^2 - 2x) + (k + 2) = 0$ has	four real solution
~	$(1)\left(-2,\frac{1}{4}\right)$	that equation $(x^2 - 2x)^2 - 3$ (2) $\left(-6, \frac{1}{4}\right)$	(3) (-6, -2)	(4) not possible
	If equation x2	+ px + q = 0 and equat	ion $x^2 - rx + s = 0$ have a	a common root α = 1 then s = 0 (4) p + q + r = s
SECT	TION - II : ASS	SERTION & REASO	NING TYPE	
16.29	(1) Statement-1(2) Statement-1(3) Statement-1	Equation ax ² + bx + c 1 is True, Statement-2 is	= 0, a,b, c ∈ R has non Frue; Statement-2 is a cor Frue; Statement-2 is NOT False	q < r < s has non zero real roots if λ > 0 zero real roots if b ² – 4ac < 0 rect explanation for Statement-1. a correct explanation for Statement-1
16.30	Statement-2 :	If a,b,c are odd intege	- bx + c = 0 are two cor er then roots of the equ	secutive integers, then $b^2 - 4c = 1$ ation 4abc x ² + (b ² - 4ac)x - b = 0 are
	(2) Statement-1(3) Statement-1	1 is True, Statement-2 is	True; Statement-2 is a cor True; Statement-2 is NOT False	rect explanation for Statement-1. a correct explanation for Statement-1
16.31	 (1) Statement-1 (2) Statement-1 (3) Statement-1 (4) Statement-1 Statement-1: in x, is 2. Statement-2: 	1 is True, Statement-2 is 1 is True, Statement-2 is 1 is True, Statement-2 is 1 is False, Statement-2 is Number of values of 'a If a = b = c = 0, then 1 is True, Statement-2 is	True; Statement-2 is a cor True; Statement-2 is NOT False 5 True a' for which $(a^2 - 3a + 2)x^2$ equation $ax^2 + bx + c =$ True: Statement-2 is a co	rrect explanation for Statement-1. a correct explanation for Statement-1 $^{2} + (a^{2} - 5a + 6)x + a^{2} - 4 = 0$ is an identi 0 is an identity in x. rrect explanation for Statement-1.
16.31	 (1) Statement-7 (2) Statement-7 (3) Statement-7 (4) Statement-7 (4) Statement-1 : in x, is 2. Statement-2 : (1) Statement-7 (2) Statement-7 (3) Statement-7 	1 is True, Statement-2 is 1 is True, Statement-2 is 1 is True, Statement-2 is 1 is False, Statement-2 is Number of values of 'a If a = b = c = 0, then 1 is True, Statement-2 is	True; Statement-2 is a cor True; Statement-2 is NOT False a True a' for which $(a^2 - 3a + 2)x^2$ equation $ax^2 + bx + c =$ True; Statement-2 is a co True; Statement-2 is NOT False	Trect explanation for Statement-1. a correct explanation for Statement-1 $a^{2} + (a^{2} - 5a + 6)x + a^{2} - 4 = 0$ is an identi
16.31	 (1) Statement-7 (2) Statement-7 (3) Statement-7 (4) Statement-1: in x, is 2. Statement-2: (1) Statement-7 (2) Statement-7 (3) Statement-7 (4) Statement-7 	1 is True, Statement-2 is 1 is True, Statement-2 is 1 is True, Statement-2 is 1 is False, Statement-2 is Number of values of 'a If $a = b = c = 0$, then 1 is True, Statement-2 is 1 is True, Statement-2 is 1 is True, Statement-2 is 1 is False, Statement-2 is If $b^2 - 4ac < 0$ then root $ax^2 + bx + c = 0$ are no	True; Statement-2 is a cor True; Statement-2 is NOT False a' for which $(a^2 - 3a + 2)x^2$ equation $ax^2 + bx + c =$ True; Statement-2 is NOT False s True s of equation on-real.	rrect explanation for Statement-1. a correct explanation for Statement-1 $^{2} + (a^{2} - 5a + 6)x + a^{2} - 4 = 0$ is an identi 0 is an identity in x. rrect explanation for Statement-1.

- RRB a

2 and

nen

.

68

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOPIC	and the second	ENCE & S	ERIES	17.10
-	17	SEQUE	ENCE		17.11
SEC	CTION - I : STRAI	GHT OBJECTIVE TY	PE		
				(1, 4) = 4), then find the value of	17.12
17.1	If equation px ² +	qx + r = 0 where 2p, q,	2r are in G.P. roots of	$(\alpha^2, 4\alpha - 4)$, then find the value of (4) 18	17.13
		1	(0) 11		11.1.0
17.2		rms of an A.P. is zero, the	n sum of next n terms (a	being the first terms) is – $(4) \frac{-am(m+n)}{(m+n)}$	17.44
	(1) $\frac{-am(m+n)}{m+1}$	$(2) \ \frac{-an(m+n)}{m+1}$	(3) $\frac{-an(n+1)}{n+1}$	(*) n-1	17.14
17.3	If a, b, c are in G.F	2. and equation ax ² + 2bx	$+ c = 0$ and $dx^2 + 2ex +$	f = 0	
	have a common ro	ot, then $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in			17.1
	(1) AP	(2) GP	(3) HP	(4) None of these	
17.4	Actual sum of first f	ivo tormo io	P. as –2 instead of 2 an (3) –35	d got the sum of first 5 terms as -5.	17.1
17 5	(1) 25				
17.5	Letters having odd value envelopes, so	value can be put into odd	value envelopes and ev	six envelopes E_1 , E_2 , E_3 , E_4 , E_5 , E_6 ven value letters can be put into ever ber of such arrangement will be equa	171
	to (1) 1	(2) 2	(3) 3	(4) 4	
		ommon to the sequences to 100 terms and 31, 36		rms	17.4
	(1) 381	(2) 471		(4) none of these	
7.7	If S _r denote the sun	n of first r terms of an A	.P. then $\frac{S_{3r} - S_{r-1}}{S_{2r} - S_{2r-1}}$ is	equal to	17
((1) 2r – 1	(2) 2r + 1	(3) 4r + 1	(4) 2r + 3	
.8 L	Let $t_r = 2^{\frac{r}{2}} + 2^{\frac{-r}{2}}$. Th	en $\sum_{r=1}^{10} t_r^2$ is equal to			17
(1	1) $\frac{2^{21}-1}{2^{10}}$ + 20	$(2) \ \frac{2^{21} - 1}{2^{10}} \ + \ 19$	$(3) \cdot \frac{2^{21} - 1}{2^{20}} - 1$	(4) None of these	1
) If	$(1 + x) (1 + x^2) (1$	$(1 + x^4)$ (1 + x^{128}) =	$\sum^{n} x^{r}$ then n is		
) 255	(2) 127	(3) 60	(4) 81	
					1
-	œ.			A A A A A A A A A A A A A A A A A A A	and and a

RB CR 80 JEE (Main) - RRB CR 17.10 If the 20th term of an H.P. is 1 and the 30th term is $\frac{-1}{17}$ then its largest term (1) 1 (2) 3 (3) 0.5 (4) 7 17.11 The harmonic mean between two numbers is $\frac{21}{5}$, their A.M. 'A' and G.M. 'G' satisfy the relation $3A + G^2 = 36$. Then the sum of the squares of the numbers is (1) 42(2) 58 (4) 84(3) 76 17.12 If eleven A.M's are inserted between 28 and 10 then the number of integral A.M.'s (1) 4(2) 5 (4) 7(3) 617.13 The sum of 4 'G.M.' between 2 and 486 (1) 240 (4) 80 (2) 300 (3) 170 17.14 The product of 4 harmonic mean between $\frac{2}{3}$ and $\frac{2}{13}$ (4) $\frac{8}{5.7.9.11}$ (1) $\frac{16}{5.7.9.11}$ (2) $\frac{32}{5.7.9.11}$ (3) $\frac{64}{5.7.9.11}$ 17.15 Find the greatest value of x^2y^3 where x and y are in the first quadrant and on the line 3x + 4y = 5 $(4) \frac{15}{32}$ (3) $\frac{3}{16}$ $(1) \frac{5}{16}$ (2) $\frac{9}{16}$ 17.16 The minimum value of $4^{\sin^2 x} + 4^{\cos^2 x}$ (3) 4 (4) 1 (2) $2\sqrt{2}$ (1) 2**17.17** If a, b, c, $d \in R^+$ and a, b, c, d are in H.P. then (1) $a + d \ge b + c$ (2) $a + b \ge c + d$ (3) $a + c \ge b + d$ (4) none of these **17.18** If a, b, $c \in \mathbb{R}^+$ then $(a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$ is always (4) None of these $(3) \le 12$ $(2) \ge 9$ $(1) \ge 12$ 17.19 The sum 2 + 5 + 10 + 17 + 26 + is equal to (1) $\frac{n}{6}(2n^2 + 3n + 7)$ (2) $\frac{n}{6}(n^2 + 5n + 8)$ (3) $\frac{n}{12}(3n^2 + 4n + 9)$ (4) $\frac{n}{12}(3n^2 + 8n + 3)$ The sum 1 + 4 + 13 + 40 + 121 +..... is equal to (1) $\frac{1}{4}[3^n - 2n - 3]$ (2) $\frac{1}{4}[3^{n+1} - 2n - 3]$ (3) $\frac{1}{4}[3^n - 2n - 2]$ (4) $\frac{1}{4}[3^{n+1} - 4n - 3]$ 17.20 **17.21** The sum of the series $1.n + 2(n - 1) + 3(n - 2) + \dots + (n - 1)2 + n .1$ (1) $\frac{n(n+1)^2}{6}$ (2) $\frac{n(n+1)(n+4)}{6}$ (3) $\frac{n(n+1)(n+2)}{6}$ (4) $\frac{n(n+1)^2}{12}$ **17.22** The sum to n-terms of the series $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$ (1) $\frac{n}{2n+1}$ (2) $\frac{n}{2(n+1)}$ (3) $\frac{n}{2(2n+1)}$ (4) $\frac{n+1}{(n+2)}$ 70 Resonance"

An evaluation version of novaPDF was used to create this PDF file. Purchase a license to generate PDF files without this notice.

le of

-5

E.

ven

ual

SO JEE (Main) - RRB CR

The sum to infinite terms of the series when |x| < 117.23 $\frac{1-2x}{(1+x)^2} \qquad (3) \ \frac{1}{(1+x)^2} \qquad (4) \ \frac{1}{1+x}$ $1 - 3x + 5x^2 - 7x^3 + \dots$

1)
$$\frac{1-x}{(1+x)^2}$$
 (2)

17.24 The sum of n-terms of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$

- $(1) \frac{5}{4} + \frac{15}{16} \left(1 \frac{1}{5^{n-1}} \right) \frac{(3n-2)}{4(5^{n-1})} \qquad (2) \frac{5}{4} + \frac{15}{16} \left(1 \frac{1}{5^n} \right) \frac{(3n+1)}{4.5^n}$ $(3) \ \frac{5}{4} + \frac{15}{16} \left(1 - \frac{1}{5^{n-2}} \right) - \frac{(3n-5)}{4.5^n} \qquad (4) \ \frac{5}{4} + \frac{5}{16} \left(1 - \frac{1}{5^{n-2}} \right) - \frac{(3n-2)}{5^{n-2}}$
- 17.25 The sum $\sum_{r=1}^{n} \frac{r}{(r+1)!}$ (4) None of these (1) $\frac{1}{(n+1)!}$ (2) $1 - \frac{1}{(n+1)!}$ (3) $1 - \frac{1}{n!}$

Level : II (Tough)

17.26 If a, b, c are in G.P. and a - b, c - a and b - c are in H.P. then the value of a + 4b + c(3) 0 (2) 10 (1) 1

17.27 If $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, then the value of $S_n = 1 + \frac{3}{2} + \frac{5}{3} + \dots + \frac{99}{50}$ (1) $H_{50} + 50$ (2) $100 - H_{50}$ (3) $49 + H_{50}$ (4) $H_{50} + 100$

17.28 If a, b,
$$c \in \mathbb{R}^+$$
 then $\frac{bc}{b+c} + \frac{ac}{a+c} + \frac{ab}{a+b}$

$$1) \le \frac{1}{2} (a + b + c) \qquad (2) \ge \frac{1}{3}\sqrt{abc} \qquad (3) \le \frac{1}{3} (a + b + c) \qquad (4) \ge \frac{1}{2} \sqrt{abc}$$

7.29 If
$$\sum_{r=1}^{n} I(r) = n(2n^2 + 9n + 13)$$
 then the value of $\sum_{r=1}^{n} \sqrt{I(r)}$
(1) $\sqrt{\frac{3}{2}}(n^2 + 3n)$ (2) $\sqrt{\frac{5}{2}}(n^2 + n)$ (3) $\sqrt{\frac{5}{2}}(n^2 + 3n)$ (4) $\frac{1}{2}(n^2 + 3n + 2)$

17.30 If a, b, c are in H.P., then the value of $\frac{(ac+ab-bc)(ab+bc-ac)}{(abc)^2}$ is

(1) $\frac{(a+c)(3a-c)}{4a^2c^2}$ (2) $\frac{2}{bc} - \frac{1}{b^2}$ (3) $\frac{2}{ac} - \frac{1}{b^2}$ (4) $\frac{(a-c)(3a+c)}{4a^2c^2}$

(1)
$$\frac{r^2(1-r^{2n-2})}{a^2r^{2n-2}(1-r^2)^2}$$
 (2) $\frac{r(1-r^{n-1})}{ar^{n-1}(1-r)^2}$ (3) $\frac{(1-r^{n-1})}{a^2r^{2n}(1-r)}$ (4) none of these **Resonance**

SECTION

17.32 Sta

the

Sta

(3)(4)

17.33 Lo S S

17.34

An evaluation version of novaPDF was used to create this PDF file. Purchase a license to generate PDF files without this notice.

Resonance[®]

 $\frac{1}{a_1^2 - a_2^2} + \frac{1}{a_2^2 - a_3^2} + \dots + \frac{1}{a_{n-1}^2 - a_n^2}$ is,

ain) - RRB ca

SECTION - II : ASSERTION & REASONING TYPE

17.32 Statement-1 : If the arithmetic mean of two numbers is $\frac{5}{2}$, geometric mean of the numbers is 2, then

the harmonic mean will be $\frac{8}{5}$

Statement-2 : For a group of positive numbers (GM)² = (ÅM) (HM)

- (1) Statement-1 is true, statement-2 is true, statement-2 is correct explanation for statement-1.
- (2) Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1.
- (3) Statement-1 is true, statement-2 is false.
- (4) Statement-1 is false, statement-2 is true.
- Let a, b, c be three distinct non-zero real numbers 17.33
 - Statement-1 : If a, b, c are in A.P. and b, c, a are in GP then c, a, b are in HP
 - Statement-2 : If a, b, c are in AP and b, c, a are in GP then a : b : c = 4 : 2 : -1
 - (1) Statement-1 is true, statement-2 is true, statement-2 is correct explanation for statement-1. (2) Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1.

 - (3) Statement-1 is true, statement-2 is false.
 - (4) Statement-1 is false, statement-2 is true.

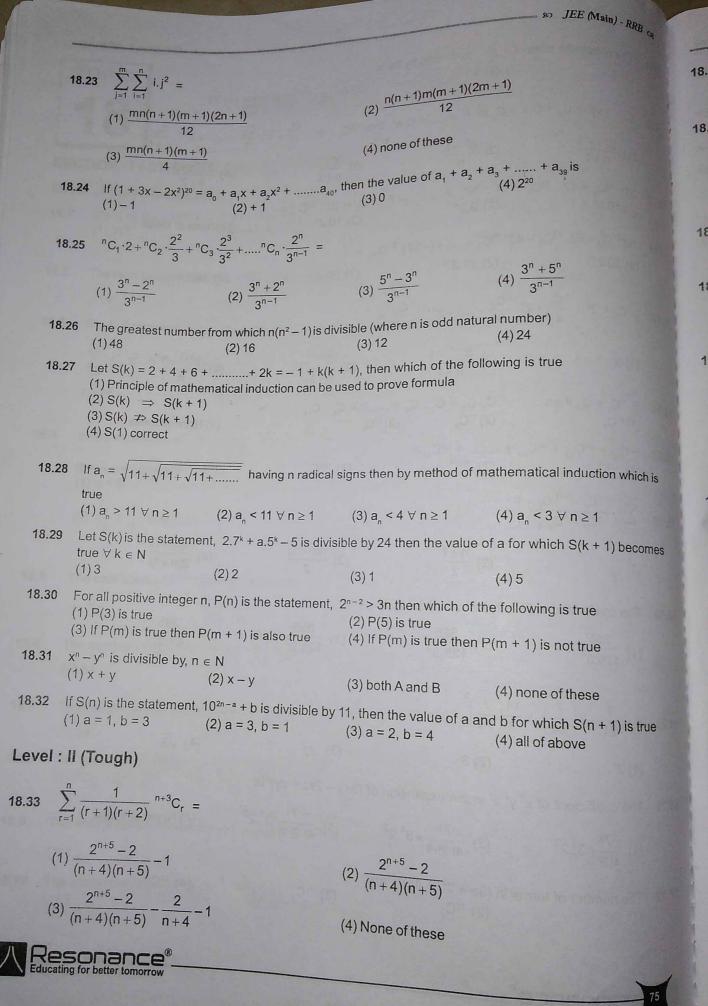
7.34 Statement-1 : If x > 1, the sum
$$1 + 3\left(1 - \frac{1}{x}\right) + 5\left(1 - \frac{1}{x}\right)^2 + 7\left(1 - \frac{1}{x}\right)^3 + \dots \infty$$
 is $2x^2 - \frac{1}{x}$

Statement-2: If 0 < y < 1, the sum of the series $1 + 3y + 5y^2 + 7y^3 + \dots$ is $(1-y)^2$

(1) Statement-1 is true, statement-2 is true, statement-2 is correct explanation for statement-1.

- (2) Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1.
- (3) Statement-1 is true, statement-2 is false.
- (4) Statement-1 is false, statement-2 is true.

sum of


	18	BINOM	IAL THEC	DREM
SEC	TION - I : STR	AIGHT OBJECTIVE TYP	E	ong a sol (Second to the
Leve	el : I (Easy/Mod			(4) None of these
10.1	(1) 113	1 ⁿ⁺² + 12 ²ⁿ⁺¹ is divisible by - (2) 123	(3) 133	(4) None of moss
18.2	The term indepe	endent of x in the expansion of	$\left(x + \frac{1}{x} + 2\right)^{21}$ is	
	(1) T	(2) T	(3) 1 22	(4) T ₂₀
18.3	lf a, b, c represe	nt the sides and A, B, C repres	ent the angles of a $\triangle ABC$; then the value of the expression
	n	. cos (r B – (n – r) A) is equal	· MILL Standard Avenue	
	1-0	(2) c ⁿ		(4) None of these
18.4	In the expansion	of $\left(2^{x} + \frac{1}{4^{x}}\right)$, $n \in \mathbb{N}$ if sum	of the coefficients of 2 nd	^d and ^{3rd} term is 36, then which of
	these are correct (1) n = 8		(2) n = 9	
	(3) $\frac{T_3}{T_3} = \frac{7}{7}$ whe	$n x = -\frac{1}{3}$		1
	· / 1 ₂ · 4			3
8.5	The coefficient of	x^{160} in the expansion of $(x^8 +$	$(x^{12} + 3x^4 + \frac{3}{3} + \frac{3}{3})$	$(1)^{-10}$ is
	1) ³⁰ C ₅	(2) ³⁰ C ₆	(3) ${}^{30}C_{24}$	$(4)^{30}C_{26}$
	÷			
.0 1	1) 61	(2) 81	^{1 of} [⁴ C ₀ a ⁴ b ² + ⁴ C ₁ a ³ b ³ (3) 41	$^{3/2} + {}^{4}C_{2}a^{2}b + {}^{4}C_{3}ab^{1/2} + {}^{4}C_{4}\Big]^{20}$
.				(4) None of these
7 TI (1	he number of ration	onal terms in the expansion o		
(1		(2) 51	(3) 17	(4) 16
Th	$^{50}C_{25} \cdot 3^{25} \cdot 2^{25}$	cient of x in the expansion of (2) ${}^{50}C_{25}$		(4)
t Th (1)				(4) none of these
(1)				
(1) The	e numerically gre	atest term in the expansion	of $(3 - 4x)^{17}$, when x =	$\frac{3}{2}$, is
(1) The (1)	1 12	eatest term in the expansion (2) T ₁₃	of $(3 - 4x)^{17}$, when x = (3) both T ₁₂ and T ₁₃	F
(1) The (1)	remainder whei	eatest term in the expansion (2) T ₁₃ n 3 ⁹¹ divided by 80 is (2) 1	of $(3 - 4x)^{17}$, when x = (3) both T ₁₂ and T ₁₃ (3) 80	$\frac{3}{2}$, is (4) T _g

80 JEE (Main) - RRB CR The remainder when $x = 5^{5^{5^5}}$ is divided by 24 is 18.11 (1) 1 (2) 3(3) 5 (4) 23 18.12 If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then $2C_0 + 2^2 \cdot \frac{C_1}{2} + 2^3 \cdot \frac{C_2}{3} + \dots + 2^{n+1} \frac{C_n}{n+1} = \frac{1}{2} + \frac{1}{2} +$ (1) $\frac{3^{n+1}-1}{n+1}$ (2) $\frac{3^n-1}{n}$ (3) $\frac{3^{n+1}}{n+1}$ (4) $\frac{3^{n+2}-1}{n+2}$ **18.13** 20. ${}^{10}C_0 + 17$. ${}^{10}C_1 + 14$. ${}^{10}C_2 + \dots - 7$. ${}^{10}C_9 - 10$. ${}^{10}C_{10} = (1) \ 10.2^9 + 1$ (2) 9.2^{10} (3) 10.2^9 (4) none of these **18.14** 63.²¹C₀ + 53.²¹C₂ + 43.²¹C₄ + + (-37).²¹C₂₀ = (4) 19.219 (1) 20.220 (2) 21.219 (3) 20.219 **18.15** 2.ⁿC₀ + 2². $\frac{{}^{n}C_{1}}{2} + 2^{3} \cdot \frac{{}^{n}C_{2}}{3} + \dots + 2^{n+1} \cdot \frac{{}^{n}C_{n}}{n+1} =$ (4) $\frac{3^{n+1}-1}{n}$ (1) $3^{n+1} - 1$ (2) $\frac{3^{n+1} - 1}{n+1}$ (3) $\frac{3^{n+1}}{n+1}$ **18.16** If ${}^{11}C_r = C_r$, then $C_0 C_3 + C_1 \cdot C_4 + \dots + C_8 \cdot C_{11} = (1)^{21}C_7$ $(2)^{22}C_8 (3)^{23}C_9$ (4) None of these **18.17** ${}^{100}C_{50} + {}^{99}C_{50} + {}^{98}C_{50} + \dots + {}^{50}C_{50} =$ (1) ${}^{100}C_{50}$ (2) ${}^{100}C_{52}$ (3) ${}^{100}C_{5}$ (4) ${}^{101}C_{51}$ 18.18 $\sum_{r=0}^{n-1} \left(\frac{{}^{n-1}C_r + {}^{n-1}C_{r-1}}{{}^{n}C_r + {}^{n}C_{r+1}} \right) =$ (2) $\frac{n+1}{2}$ (3) $\frac{n(n+1)}{2}$ (4) $\frac{n(n-1)}{2(n+1)}$ (1) $\frac{n}{2}$ The coeff. of x^4 in $(3-2x)^{-3/4}$; for |x|<1, is 18.19 (1) $\frac{385}{128.3^4}$ (2) $\frac{385}{128.3^3}$ (3) $\frac{385}{128.3^3} \cdot 3^{-3/4}$ (4) $\frac{385}{64.3^3} \cdot 3^{-3/4}$ 18.20 $1 + \frac{7}{24} + 2 \cdot \left(\frac{7}{24}\right)^2 + \frac{14}{3} \left(\frac{7}{24}\right)^3 + \dots =$ $(4) \sqrt{3}$ $(3) \sqrt{2}$ (2) 3(1) 2The coefficient of $x^6 y^5 z^3$ in the expansion of $(3xy - 2xz + zy)^7$ is 18.21 (1) $\frac{-7!}{4!3!} \times 3^3.2^3$ (2) $\frac{7!}{4!2!1!} \times 3^4.2^2$ (3) $\frac{-7!}{4!2!1!} \cdot 3^4.2^2$ (4) None of these The number of terms in $(3a + 2b + 4c)^{70}$ are (4) 72C3 (3) 71C, 18.22 (2) ⁷²C₂ (1) ⁷³C₂ ating for better tomorrow

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

on

of

RB CR

19.36
$$\frac{m_{C_{n}}}{(1)0} = \frac{m_{C_{n}}}{(1)0} = \frac{m_{C_{n}}}{(2)} \frac{m_{C_{n}}}{(2)} = \frac{m_{C_{n}}}{(2)} \frac{m_{C_{n}}}{(2)} = \frac{m_{C_{n}}}{(2)} \frac{m_{C_{n}}}{(2)} = \frac{m_{C_{n}}}}{(2)} = \frac{m_{C_{n}}}}{(2)} =$$

(3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True

tor than the number to

19 PERMUTATION & COMBINATION

SECTION - I : STRAIGHT OBJECTIVE TYPE

Level : I (Easy/Moderate)

19.1	There are 10 cand	voter may vote for any i didate and 4 are be elec	number of candidates not ted. The number of ways i	greater than the number to be elected n which a voter may vote for at least one
	(1) 385	(2) 1110	(3) 5040	(4) None of these
19.2	The sum of the dig (1) 106	its in the unit place of a (2) 107	ll numbers formed with the (3) 108	e help of 3, 4, 5, 6 taken all at a time is (4) None of these
19.3	Number of ways in (1) 162	which 9 different toys (2) 164	can be distributed among (3) 165	two brotihes in the ratio 1 : 2 is - (4) 168
19.4	The number of orde (1) 6005	er triplets of positive int (2) 4851	egers which are solutions (3) 5081	s of the equation x+y+z = 100 is (4) None of these
19.5	10 different letters Then the number c (1) 69760	of alphabet are given of words which have a (2) 30240	tleast one letter repeated	are formed from these given letters d is (4) None of these
19.6			(3) 99748	
	is oqual to		vowels and 3 consonan	ts taken from 4 vowels and 5 conso
	(1) 60	(2) 120	(3) 720	(4) none of these
	It each of 10 points number of triangles 1) 860	on a straight line be that can be formed w (2) 900	joined to each of 10 pc ith the given points as v (3) 920	pints on a parallel line then the tot vertices is (4) none of these
(1	1) 614	(2) 615	(3) 613	and these words are written out as (4) 616
(1)	C_{r-1} 10, C_{r} =	45 and ${}^{n}C_{r+1} = 120$,	then r equals	
		(2) 2	(3) 3	(4) 4
(1) 11 The	26664	(2) 206664	at can be formed with th (3) 206644	(4) 4 ne digits 1, 2, 2 and 3 (4) none of these
that (1) :	t the two C are toge	ether but no two S ar (2) 24	t be formed by using th te together is : (3) 54	(4) none of these
2 The	number of ways i	n which 10 boys and	(3) 54	(4) 48
alter (1) 2	nate is ! × 10! × 10 !	(2) 10! × 10 !	^{a 10} girls can be seat (3) 2! × 10!	(4) 48 ed in a row so that boys and girl
-			and the second	(4) 10! × 11× 10 !
Res	Onance®			
	an added tomorrow	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER		

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

19

19

	The number of divisors o (1) 60 (f 9600 including 1 and 2) 58	9600 are (3) 48	(4) 46
		mangoes. the number		ey can divide them if all mangoes
		2) 3456	(3) 5462	(4) none of these
101.	The prime ministers of S can seat themselvs at a (pearson)	countries meet to dis a round table so that	cuss the terrorism p the Pakistan and Inc	roblem. The number of ways they dia prime ministers sit together is
		(2) 2.8!	(3) 7!	(4) 8!
19.16	The maximum no. of po (1) 66	ints in which 5 circles (2) 60	and 4 straight lines (3) 33	intersect is (4) 46
19.17	In a shelf there are 5 p	hysics, 4 mathematics	s and 3 chemistry bo	ooks. How many combinations are
J	(1)4000	(2) 8191	(3) 139	(4) 140
19.18	many ways are there to	basket of which 5 are i select atleast one ba (2) 119	red 4 black and 3 blu II. (3) 240	e balls blue balls are different. How (4) 120
19.19	(1) 239In how many ways thre(1) 150		e distributed in 4 stu (3) 200	udents (4) 800
19.20	In how many ways car	5 rings be worn on f (2) 1024	(3) 125	of rings can be worn on any finger: (4) 512
19.21	There are four different these envelopes one in	(2) 12	(3) 11	
19.22	Two straight lines inte Q_2 Q _n on the other. these points as vertice	If the point is not to	bo dood, and	tre taken on one line and points Q_1 , or of triangles that can be drawn using
	(1) n(n - 1)	(2) $n^2(n-1)^2$		(4) $n^2(n-1)$
19.23	If 44! is divisible by 3 ⁿ (1) 20	(2) 19	(0) 21	(4) 18
19.24		girls are to be seater hbour and the girl y	d around a table, in does not want any	a circle. Among them the boy x does boy neighbour. The number of such
	arrangement is (1) 4	(2) 6	(3) 8	(4) 10
Leve	I : II (Tough)			national and a second sec
19.25	different tickets of the	same class. Number ((3) ⁸⁴ C ₇₅	ations. 75 persons enter the train with 75 kets they may be holding is : (4) None to play on till a team wins 5 matches. Th
19.26	In a unique hockey ser number of ways in whi (1) 126	ies between india and ich the series can be (2) 252	pakistan, they dicide won by india if no ma (3) 225	to play on till a team wins 5 matches. Th atch ends in a draw is : (4) 276
	in its interest			78
八	Resonance"			
	Educating for better tomorrow			

n

	80 JEE (Main) - RRB
19.27 Six persons A, B, C, D, E and F are to be seated at a circular if A must have either B or C on his right and B must have eit (1) 36 (2) 12 (3) 18	table . The formula of the formula table d_{ong} her C or D on his right is (4) 24
(1) 36 (2) 12 (3) 10 19.28 The number of permutations which can be formed out of th	he letters of the word of the laking three
Internations (3) 42 (1) 120 (2) 60 (3) 42 19.29 The number of 7 digit numbers with sum of digits equal to 10 a (1) 55 (2) 66 (3) 74	(4) 110116
19/30 No. of ways of arranging exactly 4 fruits from 5 apples, 4 r (1) 12 (3) 17	mangoes and 2 oranges.
(1) (2) (2) (3) (3) (3)	(4) 15
19/31 Number of rectangle excluding square in chess board is (1) 204 (2) 1092 (3) 1296	(4) 672
19/32 The number of different ways the letters of the word ORAN given below such that no row remains empty, is equal to	NGE can be placed in the 8 boxes of the
(1) 26 (2) 26 × 6!	
(3) 6! (4) 2! × 6!	
19.33 There are 8 offical and 4 non-official members and out of the committee of 5 is to be formed such that 3 official and 2 non official and 3 n	hese 12 members, in how many way
(1) 363 (2) 336 (3) 236	ficial are in committee (4) 326
SECTION - II : ASSERTION & REASONING TYPE	(.) 520
 19.84 Statement-1 : If N is the number of positive integral solutions distinct primes. Statement-2 : Prime numbers are 2,3,5,7,11,13 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a coll (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False Statement-1 is True 	rrect explanation for Statement-1. a correct explanation for Statement-1
19.35 Statement-1 : The number of ways in which 30 identical things each person gets atleast 2 things is ²¹ C ₇	Can be distributed
Statement-2 : Coeff of ut to the	
 (2) Statement-1 is True, Statement-2 is True; Statement-2 is a corr (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 	Planation for Statement-1
19.36 Statement-1 . The number	
19.36 Statement-1 : The number of non negative integral solutions of Statement-2 : Inequation of the form $x_1 + x_2 + x_3 + x_m \le n$ can Variable x_{m+1} such that $x_1 + x_2 + x_m + x_m + x_m \le n$ can (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT and (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True	of $x + y + z \le n$, where $n \in N$ is ${}^{n+3}C_2$ in be solved by introducing a dummy. Bect explanation for Statement-1. Correct explanation for Statement-1
and a second point of the second seco	

19.37 Statement-1 : $\frac{n+1!}{n-1!}$ is divisible by 6 for some $n \in N$

Statement-1 : Product of 3 consecutive integers is divisible by 3!

(1) Statement-1 is true, statement-2 is true ; statement-2 is correct explanation for statement-1.

(2) Statement-1 is true, statement-2 is true ; statement-2 is not a correct explanation for statement-1.

(3) Statement-1 is true, statement-2 is false.

(4) Statement-1 is false, statement-2 is true.

19.38 Statement-1 : The maximum number of point of intersection of 8 unequal circles is 56.

Statement-1 : The maximum number of point into which 4 unequal circle and 4 non coincident straight lines intersect is 50.

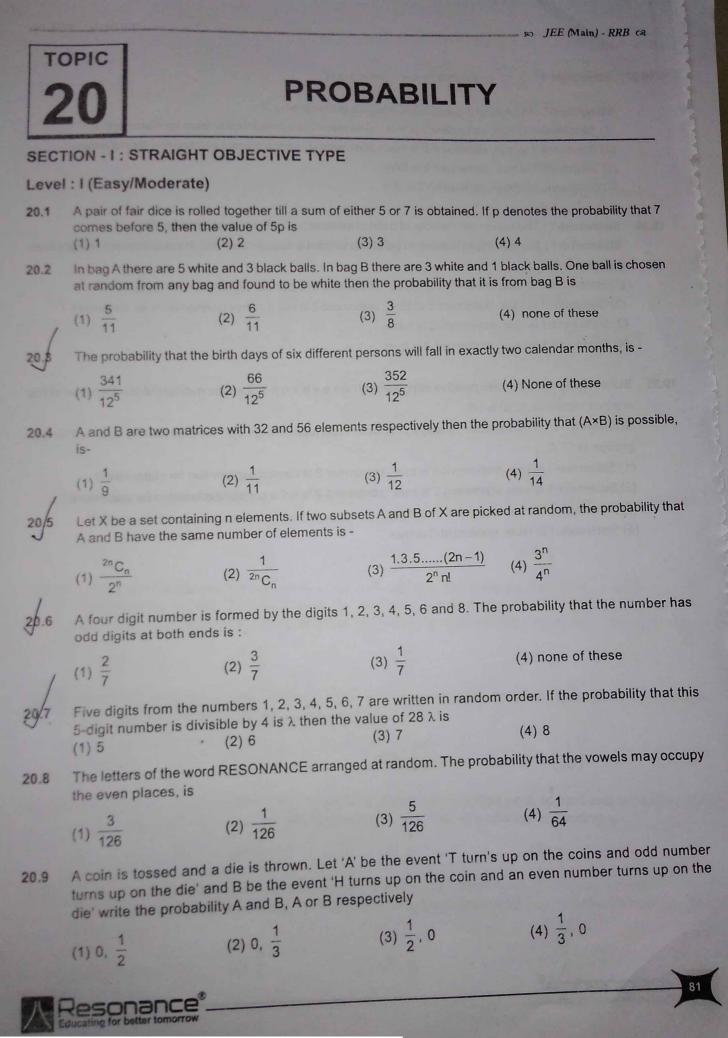
(1) Statement-1 is true, statement-2 is true; statement-2 is correct explanation for statement-1.

(2) Statement-1 is true, statement-2 is true ; statement-2 is not a correct explanation for statement-1.

(3) Statement-1 is true, statement-2 is false.

(4) Statement-1 is false, statement-2 is true.

19.39 Statement-1 : If a, b, c are positive integers such the a + b + c ≤ 8, then the number of posible value of the ordered triplets (a, b, c) is 56.


Statement-1 : The number of ways in which n identical things can be distributed into r different groups is ${}^{n-1}C_{r,1}$

(1) Statement-1 is true, statement-2 is true ; statement-2 is correct explanation for statement-1.

(2) Statement-1 is true, statement-2 is true ; statement-2 is not a correct explanation for statement-1.

- (3) Statement-1 is true, statement-2 is false.
- (4) Statement-1 is false, statement-2 is true.

	If A and B are ever to		(b) 0.40 and r (A)	\cap B) = 0.16, then P($\overline{A+B}$) is equal
1	(1) 0.90	(2) 0.46	(3) 0.26	(4) 0.54
20/11			selected month is a sec	
	(1) $\frac{3}{84}$	(2) $\frac{5}{84}$	(3) $\frac{1}{84}$	(4) $\frac{13}{84}$
20.12	In throwing a pair o (1) 1/6	of dies getting an even (2) 1/12	number on first die and (3) 1/4	d a total of 7 on both the dies is (4) 5/12
20.13	If A and B are two	events such that P(A)	$=\frac{1}{3}$, P(B) $=\frac{1}{4}$ and P($(A \cap B) = \frac{1}{5}$
	then $P(\overline{B}/\overline{A}) =$		angle of the state	
	(1) 3/40	(2) 13/40	(3) 27/40	(4) 37/40
20.14	If the odds in favou	Ir of an event be $\frac{4}{5}$, th	en the probability of no	on occurance of the event is
	(1) 8/9	(2) 4/9	(3) 5/9	(4) none of these
20.15	The probability dist	ribution of a random v	ariable X is given below	v. Then its mean is
		$\begin{array}{c} x = x_i \\ \hline P(x = x_i) \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(1) 2	(2) 1	(3) 3	(4) 4
20.16	A purse contain 4, the probability of co	oin drawn is 25 paise	or 50 paise is -	coin. A coin is drawn at random. Fir
	(1) $\frac{1}{2}$	(2) $\frac{5}{9}$	(3) $\frac{4}{9}$	(4) $\frac{1}{3}$
20.17	unbiased die is rolle	ed. If it shows even no	b. then a ball is drawn	here are 5 white and 4 black balls. from the second box otherwise fro ball was drawn from the first box is
	(1) $\frac{5}{9}$	(2) $\frac{4}{9}$	(3) $\frac{7}{9}$	(4) $\frac{1}{9}$
20.18	In a box containing is rooten. If the sam	100 eggs, 20 eggs an pling is with replacen	e rotten. The probabili nent is	ity that out of a sample of 5 eggs n
	$(1) \left(\frac{3}{5}\right)^5$	$(2) \left(\frac{4}{5}\right)^5$	$(3) \left(\frac{2}{5}\right)^5$	$(4) \left(\frac{1}{10}\right)^5$
	Three players A, B, each draw. If the wi	nner is one who drav	vs a red card, then C	ffled pack of card and reshuffled 's chance of winning is
20.19			(3) $\frac{1}{6}$	(4) $\frac{1}{5}$
	(1) $\frac{1}{8}$		tain 2 white and 3 bla	ack balls, 4 white and 2 black balls e of the bag find the probability c
0.20	there are 2 hogo wi	nich are known to cor balles. A bag is drav	vn randomly from on	
0.20	There are 3 bags wi 3 white and 2 black	hich are known to con balles. A bag is drav (2) $\frac{5}{9}$	(3) $\frac{4}{9}$	$(4) \frac{1}{9}$

one

ree

nly.

he

8

5

f

			80) JEE (Ma	ain) - RRB ca
		2	The probability that the targ	
20.21 The pro	bability of a man hitting a tar	get is $\frac{2}{3}$. He tries 5 time		
at least	3 times, is	$(2)^{5}$	$(1)^0$ (4) none of these	
(1) ⁵ C ₃	$\left(\frac{2}{3}\right)^{3} \left(\frac{1}{3}\right)^{2}$ (2) ${}^{5}C_{4}\left(\frac{2}{3}\right)^{2}$	$\left(\frac{2}{3}\right)^{1}$ (3) ${}^{5}C_{5}\left(\frac{2}{3}\right)$	$\left(\frac{1}{3}\right)^0$ (4) none of these are four possible answ	
20.22 1	trance test there are multip of which one is correct. The the cogrect answer to a qu	la choice questions.	knows the answer to quest at he was guessing is	ers to each ions is 75%.
$(1) \frac{1}{12}$	$(2) \frac{1}{1}$	$(3) \frac{1}{13}$	3	
20,23 In 8 trials failure in e	of an experiment, if the prot each trial is -	pability of getting '3 succe	ess' is maximum, then the p	probability of
(1) $\frac{3}{8}$	(2) $\frac{5}{8}$	(3) $\frac{1}{8}$	(4) $\frac{1}{4}$	
question of	ance test there are multipl f which one is correct. The p obability of correct answer	probability that a student	re are four passible answ knows the answer to a que	vers to each stion is 90%
(1) $\frac{37}{40}$		(3) $\frac{1}{3}$	(4) $\frac{33}{40}$	
Level : II (Tough)			
(1) 6.5 20.26 E and F be tw	(2) 17.5 to independent events such ability that niether E nor E b	(3) 7.5 that P(E) < P(F). The pro appen is 1/2. Then	two rupees coins. Find th (4) 8.5 pabililty that both E and F ha	
(3) $P(E) = 2/3$	P(F) = 1/2 B, P(F) = 3/4	(2) P(E) = 1/2 , (4) P(E) = 1/4 ,		
	vn to speak truth 3 out of 4 lly a six is :		nd reports that it is a six. Th	ne probabilit
(1) 3/8	(2) 1/5	(3) 3/4	(4) None of these	
	A,B &C are to speak at a bability that A speaks befor	function along with 5 oth e B & B speaks before C		in a randor
(1) $\frac{3}{8}$	(2) $\frac{1}{12}$	(3) $\frac{1}{8}$	(4) $\frac{1}{6}$	
0.29 If m is a natural	number such that $m \le 5$, th	en the probability that a	uadratic eqaution x ² + mx	1 m
has real roots is			uauratic eqaution x ² + mx	$+\frac{1}{2}+\frac{11}{2}=$
(1) $\frac{1}{5}$	(2) $\frac{2}{3}$	(3) $\frac{3}{5}$	(4) $\frac{1}{5}$	
			5	
Resonanci	e [®]			

<u>S</u> 20

2

2

SECTION - II : ASSERTION & REASONING TYPE

- 80 JEE (Main) RRB R
- 20.30 Statement-1 : Out of 7 tickets consecutively numbered three are drawn at random, the chance that

the numbers on them are in A.P. is $\frac{9}{35}$

Statement-2 : Out of (2n - 1) tickets consecutively numbered three are drawn at random, the chance that

the numbers on them are in A.P. is $\frac{2n+3}{(2n-1)(2n-3)}$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

20.31 Statement-1 : If A and B are two events in a sample space such that P(A) = .3, P(B) = .3, then $P(A \cap B)$ can not be found

Statement-2 : $P(\overline{A} \cap B) = P(B) - P(A \cap B)$

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Let A, B, C be three mutually independent events.

Statement-1 : A & B U C are independent

- Statement-2 : A & B

 C are independent
- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- **20.33** Let A & B be two events such that $P(A \cup B) = P(A \cap B)$.

Statement-1 : $P(A \cap B') = P(A' \cap B) = 0$ Statement-2 : P(A) + P(B) = 1

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- 20.34 Statement-1: The probability of drawing either a ace or a king from a pack of card in a single draw is $\frac{2}{13}$

Statement–2 : For two events $E_1 \& E_2$ which are not mutually exclusive, probability is given by $P(E_1 \cup E_2) = PE_1 + P(E_2) - P(E_1 \cap E_2)$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

TOPIC 21 MATRICES & DETERMINANT	21.8 If A _r
SECTION - I : STRAIGHT OBJECTIVE TYPE Level : I (Easy/Moderate)	(1)(
21.1 If $\Delta(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 1 \\ 2x^2 + 5x - 9 & 4x + 5 & 2 \\ 8x^2 - 6x + 1 & 16x - 6 & 8 \end{vmatrix} = ax^3 + bx^2 - cx + d$, then (4) $d = 189$	21.9 If
(1) $a = 0$ (2) $b = 0$ (3) $c = 0$ (4) $d = 105$ 21.2 Matrix A is given by $A = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix}$, then the determinant of $(A^{2005} - 6.A^{2004})$, is -	(1
(1) 2^{2006} (2) (-11) . 2^{2005} (3) -2^{2003} 21.3 If 3 digit numbers A28, 3B9 and 62C are divisible by a fixed constant 'K' where A, B, C are integers lyin	21.10 If
between 0 and 9, then determinant $\begin{vmatrix} A & 3 & 6 \\ 8 & 9 & C \\ 2 & B & 2 \end{vmatrix}$ is always divisible by (1) K (2) A (3) ABC (4) K ²	21.11
21.4 If $0 \le [x] \le 2$; $-1 \le [y] \le 1$ and $1 \le [z] \le 3$ where [.] denotes the greatest integer function, then the maximum value of the determinant $\begin{bmatrix} x \\ y \end{bmatrix} + 1$ $\begin{bmatrix} y \\ y \end{bmatrix} \begin{bmatrix} z \\ z \end{bmatrix}$ is -	um 21.12
(1) 2 (2) 4 (3) 6 (4) 8	21.13
21.5 If $\begin{vmatrix} 2bc-a^2 & c^2 & b^2 \\ c^2 & 2ac-b^2 & a^2 \\ b^2 & a^2 & 2ab-c^2 \end{vmatrix} = 0$ and a, b, c are different real numbers, then the value of	21.14
3(a + b + c) + 2 is (1) 5 (2) 0 (3) 2 (4) 6 1.6 If the system of equation $\lambda p + q + r = 0$ $p + \lambda q + r = 0$ $p + q + \lambda r = 0$	21.15
has non trivial solution, then the value of λ can be the roots of quadratic equation, which is (1) $x^2 + x - 2 = 0$ (2) $x^2 - x + 2 = 0$ (3) $x^2 + 4x + 1 = 0$ (4) $x^2 - 3x + 2 = 0$	
.7 If $f(x) = \begin{vmatrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \\ \sin x & \sin x & 1 \end{vmatrix}$, $g(x) = \int_{0}^{x} f(t) dt$, then range of g'(x) equal to	21.1 21.1
(1) $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$ (2) $\begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{bmatrix}$ (3) (0, ∞) (4) none of these	
Resonance [®]	85

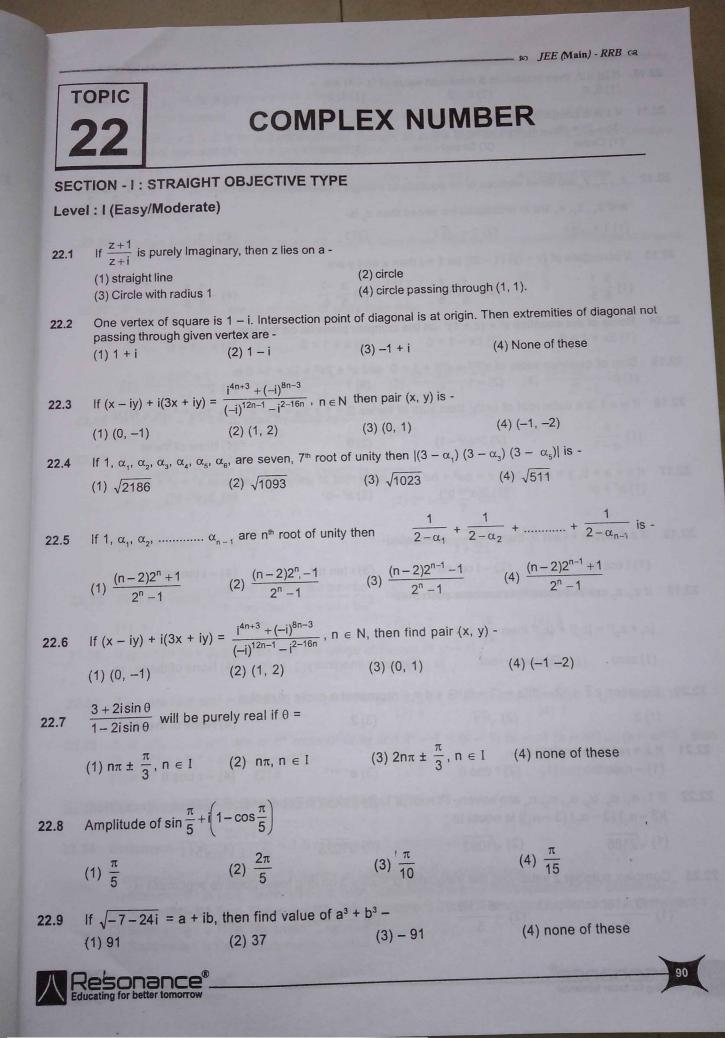
so JEE (Main) - RRB CR

21.5 If
$$A_{n} = \begin{vmatrix} r, d & h C_{1} & 2^{n} & h^{2} + h + 2 \\ 1 & 1 & 2 \end{vmatrix}$$
, then $\sum_{i=1}^{n} A_{i}$ is equal to
(1)0 (2) $\frac{n(n+1)}{2}$ (3) n² (4) $\sum_{r=2}^{n} r$
21.9 If $A_{r} = \begin{vmatrix} r & n & 6 \\ r^{2} & 2n^{2} & 4n - 2 \\ r^{3} & 3n^{3} & 3n^{2} - 3n \end{vmatrix}$, then $\sum_{r=0}^{r-1} A_{r}$ equals to
(1) n² (n + 2) (2) n(n + 2)² (3) $\frac{1}{12} n(n^{3} + 2)$ (4) none of these
21.10 If $A_{r} = \begin{vmatrix} r^{2} & 2n^{2} & 2n^{2} \\ nC_{r} & n^{2}C_{r} \\ n^{2}C_{r} & n^{2$

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

Car

9


50 JEE (Main) - RRB (R

Resonance®

21.25
$$u \begin{pmatrix} 1 \\ (10^{\circ} \\ (10^{\circ} \\ (10^{\circ} \\ (2)^{\circ} \\ (2)^{\circ} \\ (2)^{\circ} \\ (2)^{\circ} \\ (2)^{\circ} \\ (3)^{\circ} \\ (2)^{\circ} \\ (3)^{\circ} \\ (2)^{\circ} \\ (2)^{\circ} \\ (3)^{\circ} \\ (2)^{\circ} \\$$

1

80 JEE (Main) - RRB (2 SECTION - II : ASSERTION & REASONING TYPE = – 2, where ω and i are cube and fourth root of unity respectively. T 0 0 21.31 Statement-1 : $-\omega^{20}$ i98 0 F **Statement-2**: If all the diagonal element of a determinant are zero and $a_{ij} = -a_{ji}$, then its value is always zero. (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1. (2) Statement 1 is the correct explanation of Statement (2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1
 (3) Statement 1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1 S SEC (3) Statement-1 is false, Statement-2 is true. 1 (4) Statement-1 is true, Statement-2 is false. Leve 21 21.32 For a system of equation AX = B **Statement-1**: System have unique solution if B is a non singular matrix and matrix A can be singular. 22.1 Statement-2: Singular matrix have value of its determinant equal to zero. 2 (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement -1 is True, Statement -2 is False 22.2 (4) Statement -1 is False, Statement -2 is True 2 b С 1 2 3 a Statement-1: $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} b & c+1 & a-1 \end{bmatrix}$, then AB = BA is possible if $B = A^{-1}$ or value of 21.33 22.3 c a-1 b+1 6 7 8 2 a + b + c = 1.Statement-2 : AI = IA is possible when I is the unit matrix of order '3' or I = A^{-1} 22.4 (1) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1 (2) Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement -1 is True, Statement -2 is False (4) Statement -1 is False, Statement -2 is True 22.5 1 log_x y log_x z Statement-1 : $\triangle = \begin{vmatrix} \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix} = 0$ 21.34 **Statement-2**: $\log_{b} a = \frac{\log a}{\log b}$ and if any two rows are identical then $\Delta = 0$ 22.6 (1) Statement -1 is True, Statement -2 is True ; Statement -2 is a correct explanation for Statement -1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement -1 is True, Statement -2 is False 22.7 (4) Statement -1 is False, Statement -2 is True Statement 1 : If A = $\begin{bmatrix} a^2 + x^2 & ab - cx & ac + bx \\ ab + xc & b^2 + x^2 & bc - ax \\ ac - bx & bc + ax & c^2 + x^2 \end{bmatrix} \text{ and } B = \begin{bmatrix} x & c & -b \\ -c & x & a \\ b & -a & x \end{bmatrix}$ 21.35 22.8 , then $|A| = |B|^2$. **Statement 2** : If A^c is cofactor matrix of a square matrix A of order n then $|A^c| = |A|^{n-1}$. (1) Statement-1 is true, statement-2 is true; statment-2 is a correct explanation for statement-1. (2) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for statement-1. (4) Statement-1 is false, statement-2 is true. 22. esonance ducating for better to

0

				TEP As the	
_				80 JEE (Main) - RRB CQ	
22	2.10 If z ≤ 2, then m (1) 6, 0	aximum & minimum valu (2) 6, –2	ue of z - 4 are - (3) 4, 2	(4) 6, 2	. 22.2
22	3z - 2 = 3z - 4	number such that then locus of z is – (2) Straight line	(3) Point	(4) Ellipse	22.:
22.	12 Z, , Z, Z, are three	e vertices of an equilate	ral triangle circumscrib	ing the circle $ z = \frac{1}{2}$. If $z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}$ i	
	and z, z, z are	in anticlockwise sense	then z ₂ is-		Le
		(2) $1 - \sqrt{3}i$	(3) 1	(4*) – 1	22
22.1	13 If conjugate of (x	+ iy) (1 - 2i) be 1 + i the	en x and y are	1 1	
	$(1) \frac{3}{5}, \frac{1}{5}$	$(2) - \frac{1}{5}, -\frac{7}{5}$	(3) $\frac{3}{5}, \frac{-7}{5}$	$(4) - \frac{1}{5}, \frac{1}{5}$	
22.1	4 Roots of the equa (1) 2x + 1 = 0	ation z ⁿ = (z + 1) ⁿ on the (2) 2x - 1 = 0	e complex plane lie on $(3) \times + 1 = 0$	1-110	22
22.1	5 Sum of common (1) 0	roots of $z^{2006} + z^{100} + 1 =$ (2) - 1	= 0 and z ³ + 2z ² + 2z + (3) 1	- 1= 0 is , (4) 2	
22.16				$3\omega^2 + \dots + 3n\omega^{3n-1} (n \in N) \text{ is -}$	
	$(1) \frac{n}{n-1}$		(3) 0	(4) None of these	22
22.17	0-1		o is cube root of unity t (3) a ³ -b ³	hen value of $x^3 + y^3 + z^3$ (4) $3(a^3 - b^3)$	2:
22.18	If $z = \cos \theta + i \sin \theta$	θ , then $\frac{z^{2n}-1}{z^{2n}+1}$ is equal	al to-		
		z ² " +1 (2) – i cot nθ		(4) – i tan nθ	
22.19		plex numbers such th			2
	$ z_1 + z_2 ^2 = z_1 ^2 + z_2 ^2$	$ ^2$ then $\frac{z_1}{z_2}$ is -			
		purely real (3)) purely imaginary	(4) None of these	2
22.20	Equation $z\overline{z} + (2 -$	$3i)z + (2 + 3i)\overline{z} + 4 =$	0 represent a circle o		
	(1) 3	(2) √13	(3) 2	(4) None of these	
	If z = re ^{ie} then arg(e ⁱ	²) is –			
	(1) – r sin θ	(2) r cos θ	(3) e ^{-r sin θ}	(4) – r cos θ	
22.22 	If 1, α_1 , α_2 , α_3 , α_4 , α_5 (3 - α_1) (3 - α_3) (3 -	, α_6 are seven, 7 th root α_5) is equal to	of unity (taken in cou	inter clock wise sequence) then	
	1) √2186	(2) \sqrt{1093}	(3) \sqrt{1023}	(4) √511	
22.23 C	Complex number z s	atisfying the inequalit	$y z - 5i \le 3$ having le	east positive argument is-	
(1	$1) \frac{12-16i}{5}$	(2) $\frac{16-12i}{5}$	(3) $\frac{16+12i}{5}$	(4) $\frac{12+16i}{5}$	
				5	
Educa	ting for better tomorrow				1
				91	

No. of Concession, State			nan konstant dan milan kan kang dalamatan kang di kang kang kang kang kang kang kang kang	
22.24	$\frac{z-(1+i)}{z+(1+i)}$ is pure imaginary	ginary then z lies on		uminde : i munatos ecolo
	(1) a line segment	(2) a circle	(3) straight line	(4) none of these
22.25	Vector z = 3 – 4i is to number correspondin	urned anticlockwise the og to newly obtained ve	ough an angle 180° and ctor is -	d stretched 2.5 times. Complex
	(1) $\frac{15}{2}$ - 10 i	$(2) - \frac{15}{2} + 10i$	$(3) - \frac{15}{2} - 10$ i	(4) None of these
Leve	I : II (Tough)			
22.26	If origin and non-real plane then λ is –	roots of $2z^2 + 2z + \lambda =$	0 form three vertices of	an equilateral triangle in argand
	(1) 2	(2) $\frac{2}{3}$	(3) – 1	(4) $\frac{3}{2}$
22.27	If 1, $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ are $\frac{1}{2-\alpha_1} + \frac{1}{2-\alpha_2} + \dots$		hen find	
	(1) $\frac{(n-2)2^n+1}{2^n-1}$	$(2) \ \frac{(n-2)2^n - 1}{2^n - 1}$	$(3) \ \frac{(n-2)2^{n-1}-1}{2^n-1}$	$(4) \ \frac{(n-2)2^{n-1}+1}{2^n-1}$
22.28	If $iz^3 + z^2 - z + i = 0$, (1) 4		(3) 2	(4) 1
22.29	If n is an integer, the $(1 + \cos \theta + i \sin \theta)^n +$	n ⊦(1 + cosθ – i sinθ)ª is		
	(1) $2^n \cos^n \frac{\theta}{2} \cdot \cos \frac{n\theta}{2}$		(2) $2^n \cos^n \frac{\theta}{2}$. sin	<u>n0</u> 2
	(3) $2^{n+1} \cdot \cos^n \frac{\theta}{2} \cdot \sin^n \theta$	$\frac{n\theta}{2}$	(4) $2^{n+1} \cdot \cos^n \frac{\theta}{2} \cdot c_0$	$rac{n\theta}{2}$
22.30	Find the value of $\frac{a+}{b+}$	$\frac{b\omega + c\omega^2}{c\omega + a\omega^2} + \frac{a + b\omega + c\omega}{c + a\omega + b\omega}$	$\frac{2}{2}$, here ω is complex c	ube root of unity.
	(1) 1	(2) – 1	(3) – 2	(4) 3
22.31	$\begin{aligned} & f z - 1 + z + 3 \le 8 \\ & (1) (1, \infty) \end{aligned}$	then find the range c (2) (1, 2)	of values of z – 4 (3) [1, 9]	(4) (0, 3)
	(1) 2	(2) 5	(3) 4	ther, then x + y is equal to - (4) 7
22.33	1, α , α^{2} , α^{n-1} a	re n, n th roots of unity	$x = x^n - 1 = (x - 1)$	$(x - \alpha) (x - \alpha^2)(x - \alpha^{n-1})$,
	$(1 - \alpha)(1 - \alpha^2)(1 - \alpha^3)$ (1) n -1	$(1 - \alpha^{n-1})$ is (2) n	(3) 0	(4) not defined
	ON - II : ASSERTI			
2.34	Statement-1 : $\begin{vmatrix} 3z \\ 2z + z \end{vmatrix}$	$\frac{+i}{3+4i} = 1.5$ represen	ts a straight line	1
		e, Statement-2 is True; e, Statement-2 is True; e, Statement-2 is False	Statement-213 NOT 20	ine et explanation for Statement-1. correct explanation for Statement
AR	esonance [®] _			annannaach.

RB CR

13/2

23

23

2:

Statement-1: Minimum of $f(\theta) = \begin{vmatrix} 2i \\ 3 - ie^{i\theta} \end{vmatrix}$ is $\frac{1}{\sqrt{2}}$ 22.35

Statement-2: Maximum value of $f(0) = \frac{2i}{3 - ie^{i\theta}}$ is 1

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement 1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
 (3) Statement-1 is True

- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Statement-1: Centre of circle $\frac{|z+1|}{|z-1|} = 2$ is $\left(\frac{5}{3}, 0\right)$ 22.36

Statement-2: radius of circle $\frac{|z+1|}{|z-1|} = 2$ is $\frac{4}{3}$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

22.37 Statement-1: If z_1, z_2, z_3 are such that $|z_1| = |z_2| = |z_3|$ 1, then maximum value of $|z_2 - z_3|^2 + |z_3 - z_1|^2 + |z_1 - z_2|^2$ is 9

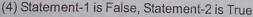
Statement-2: If z_1, z_2, z_3 are such that $|z_1| = |z_2| = |z_3| = 1$, then is $(z_2\overline{z}_3 + z_3\overline{z}_1 + z_1\overline{z}_2) \ge -\frac{3}{2}$

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False

(4) Statement-1 is False, Statement-2 is True

22.38 Statement-1: If $\omega \neq 1$ is a cube root of unity and z is a complex number such that |z| = 1, then


 $\frac{\left|\frac{2+3\omega+4z\omega^{2}}{4\omega+3\omega^{2}z+2z}\right|=1$

Statement-2: If z_1 , z_2 are two complex numbers then $|z_1| = |z_2| \Rightarrow z_1 = \overline{z}_2$

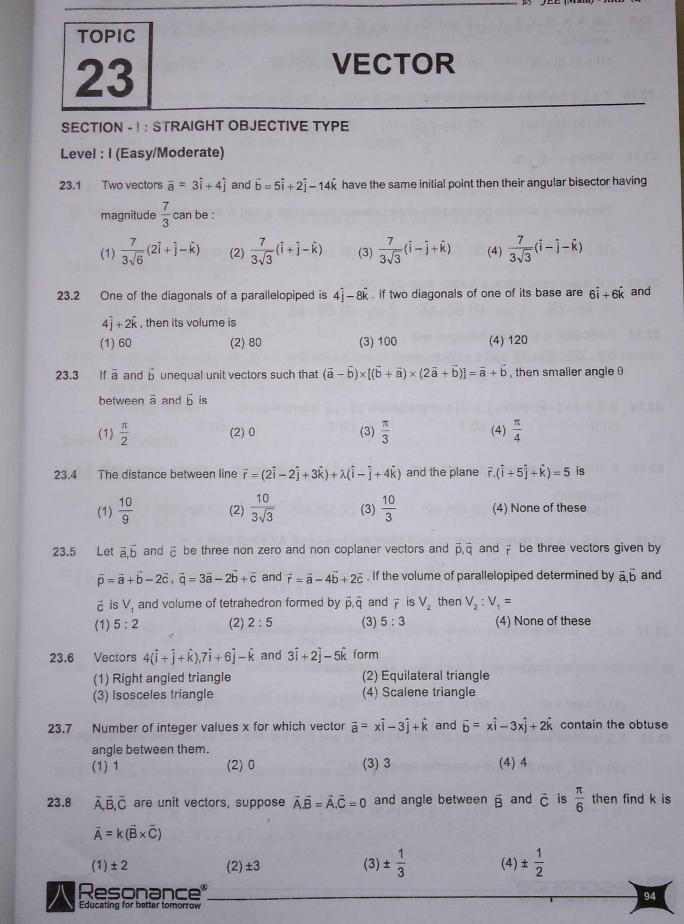
(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(3) Statement-1 is True, Statement-2 is False

LI 20

21


2

2

2

S

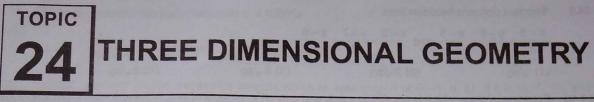
80 JEE (Main) - RRB (R

		= \$5 JEE (Main) - RRB (a)
	-tictving R×E	$\vec{B} = \vec{C} \times \vec{B}$ and \vec{D} :
-	23.9 Let $\vec{A} = 2\hat{i} + \hat{k}$, $\vec{B} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{C} = 4\hat{i} - 3\hat{j} + 7\hat{k}$ A vector \vec{R} satisfying $\vec{R} \times \vec{E}$ would be $(1) -\hat{i} - 8\hat{j} + 2\hat{k}$ (2) $\hat{i} + 8\hat{j} - 2\hat{k}$ (3) $2\hat{i} + 1\hat{6}\hat{j} - 4\hat{k}$ (4) -	$2\hat{i} + 1\hat{6}\hat{j} + 4\hat{k}$ 23.19
SI	$(1) = 1 - 8j + 2k \qquad (2) + 4j = 2k $ $(2) = 1 + 6j = 2k $ $(2) = 1 + 6j = 2k $ $(3) = 1 + 6j = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $	ã = Ď ≠ Ĉ 23.20
Le	$23.11 \text{Vector } \vec{a} = -4\hat{i} + 3\hat{k}$	Contraction of the local
20	$\vec{b} = 14\hat{i} + 2\hat{j} - 5\hat{k}$. The vector \vec{d} which is bisecting the angle between the vectors \vec{a} and \vec{b} and	is having magnitude Ja 23.21
2(The vector \vec{d} which is bisecting the angle between the vector is (1) $\hat{i} + \hat{j} + 2\hat{k}$ (2) $\hat{i} - \hat{j} + 2\hat{k}$ (3) $\hat{i} + \hat{j} - 2\hat{k}$ (4) n	
21	23.12 If P is any point within a \triangle ABC, then $\overrightarrow{PA} + \overrightarrow{CP} =$ (1) $\overrightarrow{AC} + \overrightarrow{CB}$ (2) $\overrightarrow{BC} + \overrightarrow{BA}$ (3) $\overrightarrow{CB} + \overrightarrow{AB}$ (4) \overrightarrow{CB}	23.22 CB + BA
2	23.13 If ABCDEF is a regular hexagon and $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \lambda \overrightarrow{AD}$ then $\lambda =$ (1) 2 (2) 3 (3) 4 (4) 6	23.23
	23.14 If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\hat{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$ then $\lambda + \mu$ (1) 0 (2) 1 (3) 2 (4) 3	
2	23.15 If three unit vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{b}{2}$ then vector \vec{a} m	lakes angles with b _{&c}
	respectively (1) 60°, 90° (2) 45°, 45° (3) 30°, 60° (4) 9	23.24 90°, 60°
*	23.16 If $\vec{p} \& \vec{s}$ are not perpendicular to each other and $\vec{r} \times \vec{p} = \vec{q} \times \vec{p} \& \vec{r} \cdot \vec{s} = 0$ then \vec{r}	ř =
	(1) $\vec{p} \cdot \vec{s}$ (2) $\vec{q} - \left(\frac{\vec{q} \cdot \vec{s}}{\vec{p} \cdot \vec{s}}\right) \vec{p}$ (3) $\vec{q} + \left(\frac{\vec{q} \cdot \vec{p}}{\vec{p} \cdot \vec{s}}\right) \vec{p}$ (4) \vec{q}	$+ \mu \vec{p}$ for all scalars μ 23.2
1	23.17 If \vec{a} , \vec{b} , \vec{c} are three non-coplanar & \vec{p} , \vec{q} , \vec{r} are reciprocal vectors, then:	
	$\left(\vec{\ell a} + \vec{m b} + \vec{n c} \right) \cdot \left(\vec{\ell p} + \vec{m q} + \vec{n r} \right) \text{ is equal to } :$	23.2
	(1) $\ell^2 + m^2 + n^2$ (2) $\ell m + m n + n \ell$ (3) 0 (4) r	none of these
2:	3.18 If \vec{a} is vector whose initial point divides the join of $5\hat{i}$ and $5\hat{j}$ in the ratio λ : 1 and $ \vec{a} \le \sqrt{17}$ then the set of exhaust	l terre in the terre in and
	$ \vec{a} \le \sqrt{17}$, then the set of exhaustive values of λ is	a terminal point is original 23.2
	(1) $\left[-6, -\frac{1}{6}\right]$ (2) $\left(-\infty, \frac{1}{4}\right) \cup [4, \infty]$ (3) $\left[\frac{1}{4}, 4\right]$ (4)	$\left[-\frac{1}{6},\infty\right]$
1		
1	a so ostar tomorrow	95

RRB_{CR} $\vec{A} = 0$	50 JEE (Main) - RRB @
	23.19 The vector equation of the plane containing the lines $\vec{r} = (\hat{i} + \hat{j}) + \lambda(\hat{i} + 2\hat{j} - \hat{k})$ and $\vec{r} = (\hat{i} + \hat{j}) + \mu(-\hat{i} + \hat{j} - 2\hat{k})$
	(1) $\vec{r}.(\hat{i}+\hat{j}+\hat{k})=0$ (2) $\vec{r}.(\hat{i}-\hat{j}-\hat{k})=0$ (3) $\vec{r}.(\hat{i}+\hat{j}+\hat{k})=3$ (4) none
	23.20 Angle between line $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$ and the normal of plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 4$
	(1) $\sin^{-4} \frac{2\sqrt{2}}{3}$ (2) $\cos^{-1} \left(\frac{2\sqrt{2}}{3}\right)$ (3) $\tan^{-1} \frac{2\sqrt{2}}{3}$ (4) $\cot^{-1} \frac{2\sqrt{2}}{3}$
[€] √6	23.21 The line of intersection of the planes $\vec{r}.(\hat{i}-3\hat{j}+\hat{k}) = 1$ and $\vec{r}.(2\hat{i}+5\hat{j}-3\hat{k}) = 2$ is parallel to vector
*0	$(1) - 4\hat{i} + 5\hat{j} + 11\hat{k} \qquad (2) \ 4\hat{i} + 5\hat{j} + 11\hat{k} \ (3) \ 4\hat{i} - 5\hat{j} + 11\hat{k} \ (4) \ 4\hat{i} - 5\hat{j} - 11\hat{k}$
	23.22 The value of $\frac{(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2}{2\vec{a}^2\vec{b}^2} =$
	(1) $\frac{1}{2}$ (2) $\frac{3}{2}$ (3) $\frac{5}{2}$ (4) $\frac{4}{3}$
	23.23 If $\alpha(\vec{a} \times \vec{b}) + \beta(\vec{b} \times \vec{c}) + \gamma(\vec{c} \times \vec{a}) = \vec{0}$ and atleast one of the number α , β and γ is non-zero, then vector
	ā,Ē,c are (1) perpendicular (2) parallel (3) coplanar (4) none
	Level : II (Tough)
& č	23.24 If a,b,c are three non coplanar vector then
	$\frac{\vec{a}.\vec{b}\times\vec{c}}{\vec{c}\times\vec{a}.\vec{b}} + \frac{\vec{b}.\vec{a}\times\vec{c}}{\vec{c}.\vec{a}\times\vec{b}} =$
	$\frac{\vec{c} \times \vec{a}.\vec{b} \ \vec{c}.\vec{a} \times \vec{b}}{(1)\ 0} \qquad (2)\ 2 \qquad (3)\ -\ 2 \qquad (4)\ 4$
	23.25 If the non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then solution of the equation $\vec{r} \times \vec{a}$
μ	is
	(1) $\vec{r} = x\vec{a} + \frac{1}{\vec{a}.\vec{a}}(\vec{a}\times\vec{b})$ (2) $\vec{r} = x\vec{b} - \frac{1}{\vec{b}.\vec{b}}(\vec{a}\times\vec{b})$ (3) $\vec{r} = x\vec{a}\times\vec{b}$ (4) $\vec{r} = x\vec{b}\times\vec{a}$
	23.26 Image of the point 'P' with position vector $7\hat{i} + \hat{j} + 2\hat{k}$ in the line whose vector equation
	$\vec{r} = -3\hat{j} - 10\hat{k} + \lambda (4\hat{i} + 3\hat{j} + 5\hat{k})$ has the position vector
	$(1) - 9\hat{i} + 5\hat{j} + 2\hat{k} \qquad (2) \ 9\hat{i} + 5\hat{j} - 2\hat{k} \qquad (3) \ 9\hat{i} - 5\hat{j} - 2\hat{k} \qquad (4) \ 9\hat{i} + 5\hat{j} + 2\hat{k}$
igin and	23.27 let \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors such that
	$\vec{r}_1 = \vec{a} - \vec{b} + \vec{c}$, $\vec{r}_2 = \vec{b} + \vec{c} - \vec{a}$, $\vec{r}_3 = \vec{c} + \vec{a} + \vec{b}$
	$\vec{r} = 2\vec{a} - 3\vec{b} + 4\vec{c}, \text{ If } \vec{r} = \lambda_1 \vec{r}_1 + \lambda_2 \vec{r}_2 + \lambda_3 \vec{r}_3 \text{ then } \lambda_1 + \lambda_2 + \lambda_3 = (4) 2$ (1) 4 (2) 5 (3) 3 (4) 2
1	A Resonance®

(

 to 4Δ (Δ area of triangle ABC) Statement-2: Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True
 (1) - ¹/₄ (¹-2¹+¹) (2) ¹/₄ (¹-2¹+¹) (3) ¹/₄ (¹-¹) (3) ¹/₄ (¹-2¹+¹) (2) ¹/₄ (¹-2¹+¹) (3) ¹/₄ (¹-¹) (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (¹) ¹/₄ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (1) ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (1) ¹/₄ (1) ¹/₄ (2) ⁹/₄ (3) ¹/₄ (4) ¹¹/₄ (5) ¹¹/₄ (6) ¹¹/₄ (7) ¹¹/₄ (8) ¹¹/₄ (9) ¹¹/₄ (9) ¹¹/₄ (1) ¹¹
 (1) - ¹/₄ (¹ - 2¹/₁ + ¹) (2) ¹/₄ (¹ - 2¹/₁ + ¹) (3) ¹/₄ (⁵ + ¹) (2) ¹/₄ (¹ - 2¹/₁ + ¹) (2) ¹/₄ (¹ - 2¹/₁ + ¹) (3) ¹/₄ (⁵ + ¹) (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (2) ⁹ (2) ⁹ (4) ⁸¹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ¹ ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (5) ⁸¹ (6) ¹⁹ (7) ⁸¹ (8) ¹⁹ (8) ¹⁹ (9) ¹⁹ (9) ¹⁹ (1) ¹⁹<!--</td-->
 (1) - ¹/₄ (¹-2¹+¹) (2) ¹/₄ (¹-2¹+¹) (3) ¹/₄ (¹-¹) (3) ¹/₄ (¹-2¹+¹) (2) ¹/₄ (¹-2¹+¹) (3) ¹/₄ (¹-¹) (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (¹) ¹/₄ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (1) ³ (2) ⁹ (2) ⁹ (3) ²⁷ (4) ⁸¹ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (1) ³ (2) ⁹ (2) ⁹ (2) ¹/₄ (1) ¹/₄ (1) ¹/₄ (2) ⁹/₄ (3) ¹/₄ (4) ¹¹/₄ (5) ¹¹/₄ (6) ¹¹/₄ (7) ¹¹/₄ (8) ¹¹/₄ (9) ¹¹/₄ (9) ¹¹/₄ (1) ¹¹
 23.29 A new tetrahedron is formed by joining the centroids of the faces of e.g. (4) 81 (1) 3 (2) 9 (3) 27 (4) 81 (1) 3 (2) 9 (3) 27 (4) 81 (1) 3 (2) 9 (3) 27 (4) 81 (1) 3 (2) 9 (3) 27 (4) 81 (1) 3 (2) 9 (3) 27 (4) 81 (2) 9 (3) 27 (4) 81 (2) 9 (2) 9 (3) 27 (4) 81 (2) 9 (2)
 (1) 3 (2) 9 (3) 27 22.30 A.B and C are three non collinear points with position vectors ā, b, and č respectively and plane ABC is not passing through origin, then vectors ā x b, b x c, c x ā are (2) non coplanar vector (3) coplanar vector (4) linearly dependent vectors (3) coplanar vector (4) linearly dependent vectors 23.31 Statement-1: If ā is any vector in space then ā = (ā,])î + (ā,])î + (ā,k)k Statement-2: î, î, =],] = k k = 1 : î,] =]k = k î = 0 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 is Statement-2 is True; Statement-2 is True; Statement-2 is AD + CA × BD is equal to 4A (A area of triangle ABC) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 is false, Statement-2 is True 33.32 Statement-1 is False, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (5) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (5) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct
 (1) 3 (2) 9 (3) 27 22.30 A.B and C are three non collinear points with position vectors ā, b, and č respectively and plane ABC is not passing through origin, then vectors ā x b, b x č, č x ā are (2) non coplanar vector (3) coplanar vector (4) linearly dependent vectors (3) coplanar vector (4) linearly dependent vectors 23.31 Statement-1: If ā is any vector in space then ā = (ā,]) f + (ā,]) = (â, k) f 23.31 Statement-2: i, i = j, j = k k = 1: i, j = j k = k, i = 0 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 is Statement-1 is Frue 23.32 Statement-1 : If A,B,C,D are any four points in space then AB × CD + BC × AD + CA × BD is equation 4A (A area of triangle ABC) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is False, Statement-2 is True 23.32 Statement-1 : If A, B, C, D are any four points in space then AB × CD + BC × AD + CA × BD is equation 4A (A area of triangle ABC) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (5) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (5) Statement-1 is False, Statement-2 is True
 22.30 AB and C are three non collinear points with position vectors ā, b, and č respectively and plane ABC is not passing through origin, then vectors ā×b, b×c, č× ā are (1) parallel vectors (2) non coplanar vector (3) coplanar vector (4) linearly dependent vectors 23.31 Statement-1: If ā is any vector in space then ā=(ā,])î+(ā,])]+(ā,k)k Statement-2: î, î]=], f=k £ = 1; î, j]= j, k = k, î] = 0 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 is 3 Statement-1 is True, Statement-2 is True; 23.32 Statement-1 : If A, B, C, D are any four points in space then AB × CD + BC × AD + CA × BD is equation 4 (A area of triangle ABC) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True 33.32 Statement-1 : If A, B, C, D are any four points in space then AB × CD + BC × AD + CA × BD is equation 4 (A area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (5) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. <li< td=""></li<>
passing through origin, then vectors $\bar{a} \times \bar{b}, \bar{b} \times \bar{c}, \bar{c} \times \bar{a}$ are (1) parallel vectors (2) non coplanar vector (3) coplanar vector (4) linearly dependent vectors SECTION - II : ASSERTION & REASONING TYPE 23.31 Statement-1 : If \bar{a} is any vector in space then $\bar{a} = (\bar{a}, \bar{l})\bar{i} + (\bar{a}, \bar{l})\bar{j} + (\bar{a}, \bar{k})\bar{k}$ Statement-2 : $[\bar{i}, \bar{l} =], \bar{j} = \bar{k}, \bar{k} = 1$; $\bar{l}, \bar{j} = \bar{j}, \bar{k} = \bar{k}, \bar{l} = 0$ (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is False, Statement-2 is True (4) Statement-1 is False, Statement-2 is True 23.32 Statement-1 : If A,B,C,D are any four points in space then $ \overline{AB} \times \overline{CD} + \overline{BC} \times \overline{AD} + \overline{CA} \times \overline{BD} $ is equa to $4\Delta (\Delta \text{ area of triangle formed by \bar{a} and \bar{b} is \bar{a} \times \bar{b} (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True23.32 Statement-1 : If A,B,C,D are any four points in space then \overline{AB} \times \overline{CD} + \overline{BC} \times \overline{AD} + \overline{CA} \times \overline{BD} is equato 4\Delta (\Delta \text{ area of triangle formed by \bar{a} and \bar{b} is \bar{a} \times \bar{b} (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.(3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.(4) Statement-1 is True, Statement-2 is True(5) Statement-1 is False, Statement-2 is True(5) Statement-1 is False, Statement-2 is True(5) Statement-1 : Vector (-bc, b^2 + bc, c^2 + bc), (a^2 + ac, -ac, c^2 + ac) and (a^2 + ab, b^2 + ab, -ab) arcoplanar where a,b,c are non-zero then ab + bc + ca = 0Statement-2: \bar{a} \bar{b} \bar{c} are coplanar then is \bar{c} = z = 0$
passing through origin, then vectors $\bar{a} \times \bar{b}, \bar{b} \times \bar{c}, \bar{c} \times \bar{a}$ are (1) parallel vectors (2) non coplanar vector (3) coplanar vector (4) linearly dependent vectors SECTION - II : ASSERTION & REASONING TYPE 23.31 Statement-1 : If \bar{a} is any vector in space then $\bar{a} = (\bar{a}, \bar{l})\bar{i} + (\bar{a}, \bar{l})\bar{j} + (\bar{a}, \bar{k})\bar{k}$ Statement-2 : $[\bar{i}, \bar{l} =], \bar{j} = \bar{k}, \bar{k} = 1$; $\bar{l}, \bar{j} = \bar{j}, \bar{k} = \bar{k}, \bar{l} = 0$ (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is False, Statement-2 is True (4) Statement-1 is False, Statement-2 is True 23.32 Statement-1 : If A,B,C,D are any four points in space then $ \overline{AB} \times \overline{CD} + \overline{BC} \times \overline{AD} + \overline{CA} \times \overline{BD} $ is equa to $4\Delta (\Delta \text{ area of triangle formed by \bar{a} and \bar{b} is \bar{a} \times \bar{b} (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True23.32 Statement-1 : If A,B,C,D are any four points in space then \overline{AB} \times \overline{CD} + \overline{BC} \times \overline{AD} + \overline{CA} \times \overline{BD} is equato 4\Delta (\Delta \text{ area of triangle formed by \bar{a} and \bar{b} is \bar{a} \times \bar{b} (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.(3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.(4) Statement-1 is True, Statement-2 is True(5) Statement-1 is False, Statement-2 is True(5) Statement-1 is False, Statement-2 is True(5) Statement-1 : Vector (-bc, b^2 + bc, c^2 + bc), (a^2 + ac, -ac, c^2 + ac) and (a^2 + ab, b^2 + ab, -ab) arcoplanar where a,b,c are non-zero then ab + bc + ca = 0Statement-2: \bar{a} \bar{b} \bar{c} are coplanar then is \bar{c} = z = 0$
 (1) parallel vectors (2) non topparts. The end of the end
 SECTION - II : ASSERTION & REASONING TYPE 23.31 Statement-1 : If ā is any vector in space then
 23.31 Statement-1: If ā is any vector in space then
 23.31 Statement-1: If ā is any vector in space then
 a = (ā.i)î + (ā.j)ĵ + (ā.k)k Statement-2: î.î = ĵ.ĵ = k.k = 1 ; î.ĵ = ĵ.k = k.î = 0 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1 : If A,B,C,D are any four points in space then AB × CD + BC × AD + CA × BD is equa to 4A (A area of triangle ABC) Statement-2: Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (5) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (5) Statement-1 is False, Statement-2 is True (4) Statement-1 is False, Statement-2 is True
 a = (ā,Î)î + (â,Î)ĵ + (ã,Î)ŝ Statement-2: î,Î =],] = kk = 1; î,] = ĵ,k = k.ĵ = 0 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1 is False, Statement-2 is True Statement-1 is False, Statement-2 is True Statement-1 is False, Statement-2 is True Statement-2: Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True (5) Statement-1 is False, Statement-2 is True
 Statement-2: i.i = j.j = k.k = 1 ; i.j = j.k = k.i = 0 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 : If A,B,C,D are any four points in space then AB × CD + BC × AD + CA × BD is equation to 4∆ (∆ area of triangle ABC) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-2 : Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True
 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 23.32 Statement-1 : If A,B,C,D are any four points in space then AB × CD + BC × AD + CA × BD is equa to 4Δ (Δ area of triangle ABC) Statement-2 : Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (5) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (6) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (7) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (8) Statement-1 is True, Statement-2 is True (9) Statement-1 is False, Statement-2 is True (10) Statement-1 is False, Statement-2 is True (11) Statement-1 is False, Statement-2 is True (12) Statement-1 is False, Statement-2 is True (13) Statement-1 is False, Statement-2 is True (14) Statement-1 is False, Statement-2 is True (15) Statement-1 is False, Statement-2 is True
 (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 23.32 Statement-1: If A,B,C,D are any four points in space then AB × CD + BC × AD + CA × BD is equated to 4Δ (Δ area of triangle ABC) Statement-2: Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (4) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 33 Statement-1: Vector (-bc, b ² + bc, c ² + bc), (a ² + ac, - ac, c ² + ac) and (a ² + ab, b ² + ab, - ab) are coplanar where a,b,c are non-zero then ab + bc + ca = 0 Statement-2: ā b c are coplanar then ta an area.
 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 23.32 Statement-1 : If A,B,C,D are any four points in space then AB×CD+BC×AD+CA×BD is equa to 4Δ (Δ area of triangle ABC) Statement-2 : Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True
 (4) Statement-1 is False, Statement-2 is True 23.32 Statement-1 : If A,B,C,D are any four points in space then AB×CD+BC×AD+CA×BD is equated to 4Δ (Δ area of triangle ABC) Statement-2 : Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True
 to 4Δ (Δ area of triangle ABC) Statement-2: Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True
 to 4Δ (Δ area of triangle ABC) Statement-2: Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True
 Statement-2: Area of triangle formed by ā and b is ā×b (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True
 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True Statement-1: Vector (-bc, b² + bc, c² + bc), (a² + ac, - ac, c² + ac) and (a² + ab, b² + ab, - ab) a coplanar where a,b,c are non-zero then ab + bc + ca = 0 Statement-2: a b c are coplanar then to b = 0
 (3) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1 (4) Statement-1 is False, Statement-2 is True Statement-1: Vector (-bc, b² + bc, c² + bc), (a² + ac, - ac, c² + ac) and (a² + ab, b² + ab, - ab) and coplanar where a,b,c are non-zero then ab + bc + ca = 0 Statement-2: a b c are coplanar then to b = 0
 (3) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1 (4) Statement-1 is False, Statement-2 is True Statement-1: Vector (-bc, b² + bc, c² + bc), (a² + ac, - ac, c² + ac) and (a² + ab, b² + ab, - ab) and coplanar where a,b,c are non-zero then ab + bc + ca = 0 Statement-2: a b c are coplanar then to b = 0
 (4) Statement-1 is False, Statement-2 is True Statement-1: Vector (-bc, b² + bc, c² + bc), (a² + ac, - ac, c² + ac) and (a² + ab, b² + ab, - ab) a coplanar where a,b,c are non-zero then ab + bc + ca = 0 Statement-2: a b c are coplanar then to b = 0
Statement-1 : Vector (-bc, b ² + bc, c ² + bc), (a ² + ac, - ac, c ² + ac) and (a ² + ab, b ² + ab, - ab) a coplanar where a,b,c are non-zero then $ab + bc + ca = 0$ Statement-2 : $\vec{a} \cdot \vec{b} \cdot \vec{c}$ are coplanar then $(\vec{a} \cdot \vec{c} - \vec{a} \cdot \vec{c}) = 0$
Statement-2: abc are coplanar then rabat = 0
Statement-2: abc are coplanar then rabat = 0
Statement-2: \ddot{a}, b, \ddot{c} are coplanar then $[\ddot{a}b\ddot{c}] = 0$
(1) Statement 1 is True Statement 0: T
(1) Statement 4 is True, Statement-2 is True; Statement-2 is a correct exploration of
 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False. Statement 2 is True; True
(4) Statement-1 is False, Statement-2 is True


八

97

-UR	-

o of the

SECTION - I : STRAIGHT OBJECTIVE TYPE

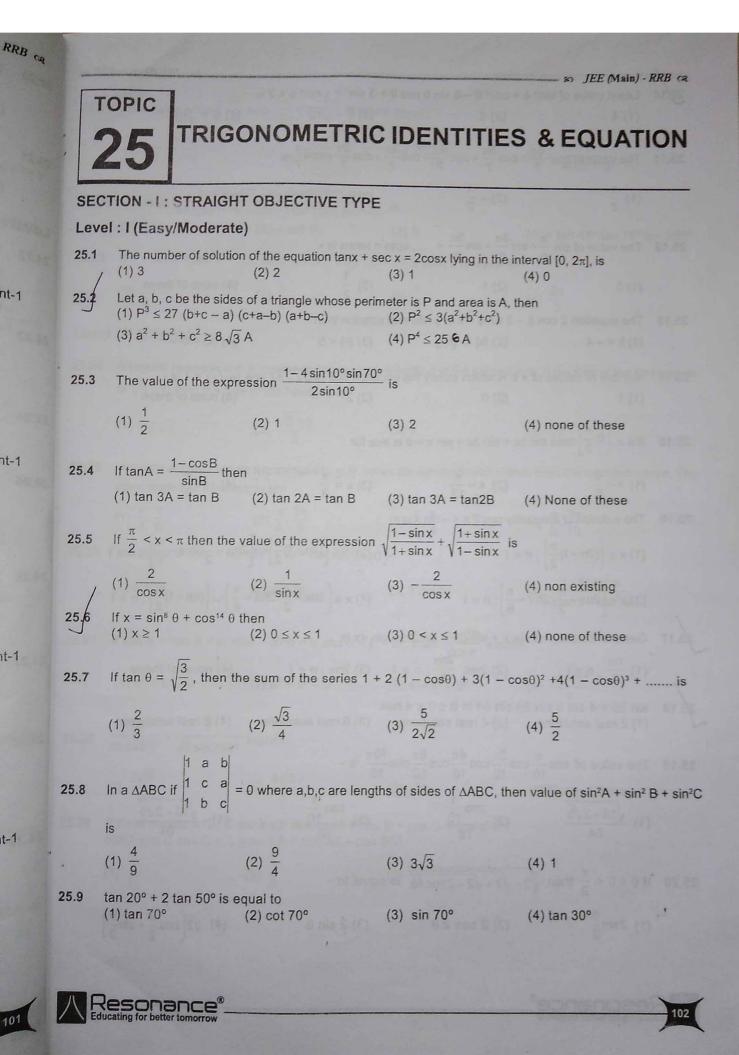
Level : I (Easy/Moderate)

12 (3)	24.1	If the incident ray and direction of the reflecte	normal have the direction	ons of the vectors $(1, -3,$	1), (1,1,1) respectively, then
C is not		(1) (4, -8 , 4)	(2) (5, -7 , 5)	(3) (6, -6 , 6)	(4) (-5 , 7, 5)
	24.2	The plane lx+my = 0 is equation of the plane is	rotated about its line of $\ell x + my + nz = 0$, then r	intersection with XOY pla n is equal to -	ne through an angle ' α ', if the
		(1) $\pm \sqrt{(\ell^2 + m^2)} \cos \alpha$	(2) $\pm \sqrt{(\ell^2 + m^2)} \sin \alpha$	(3) $\pm \sqrt{(\ell^2 + m^2)} \tan \alpha$	(4) None of these
	24.3	System of equation	x + 3y + 2z = 6 x + λ y + 2z = 7 x + 3y + 2z = μ has		
		(1) unique solution if λ (3) infinite if λ = 5, μ =	. = 2, μ ≠ 6	(2) no solution if $\lambda = 4$, (4) no solution if $\lambda = 3$,	
	24.4	Points (-2, 4, 7), (3, -6 (1) collinear (3) vertices of isosceles	5, – 8) and (1, –2, –2) are triangle	e (2) vertices of an equilat (4) none of these	teral triangle
ht-1	24.5	If projection of a line on	x, y and z axis are 6, 2 a	and 3 respectively, then c	l.c.s. of line is
		(1) $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$	(2) $\left(\frac{3}{5}, \frac{5}{7}, \frac{6}{7}\right)$	$(3)\left(\frac{1}{7},\frac{2}{7},\frac{3}{7}\right)$	(4) none of these
equal			31.45		
	24.6	Direction ratios of two lin	thes are a,b,c and $\frac{1}{bc}$, $\frac{1}{ca}$	$\frac{1}{1}$, $\frac{1}{ab}$ then lines are	
		(1) perpendicular	(2) parallel	(3) coincident	(4) none
t-1	24.7	The equation of the lin	ne passing through the	e point (1, 2, -4) and	perpendicular to the two lines
		$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$	and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z}{3}$	$\frac{2-5}{-5}$ will be	
b) are		(1) $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$		(2) $\frac{x-1}{-2} = \frac{y-2}{3} = \frac{z+3}{8}$	4
-1		(3) $\frac{x-1}{3} = \frac{y-2}{2} = \frac{z+4}{8}$		(4) none	
	24.8	The point of intersection	oflines		
12 3		$\frac{x-4}{5} = \frac{y-1}{2} = \frac{z}{1}$ and	$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ is		

(1) (-1, -1, -1) (2) (-1, -1, 1) (3) (1, -1, -1)

Resonance Educating for better tomorro

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice. (4) (-1, 1, -1)


				B) JEE (Main) - RRB (R		
2	24.9 Shortest distance be	etween lines		TTOPIC 1	24.20	
	$\frac{x-3}{x-3} = \frac{y-8}{x-3} = \frac{z-3}{x-3}$	$\frac{3}{-3}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$	NER DANS	SHTINE	24.20	The angle betw
	3 -1 1 (1) $\sqrt{30}$	$(2) 2\sqrt{30}$	(3) 5 √30	(4) 3 ³ √30		(1) $\cos^{-1}\left(\frac{4}{5}\right)$
	(1) $\sqrt{30}$	hich is parallel to y axis and	cuts off intercepts of lengt	th 2 and 3 from x axis and z $axis$	24.21	If ∆ABC is a r
24	is (1) $3x + 27 = 1$	(2) $3x + 2z = 6$	(3) 2x + 3z = 6	(4) $3x + 2z = 0$		circumcenter (1) 0
24	.11 The equation of the p the point (p, q, r) is	plane which meets the coord	linate axes in A, B, C such	n that the centroid of the ∆ABC is ₄	Level	: II (Tough)
	(1) $\frac{x-p}{p}$	$(2) \ \frac{x-q}{q} = \frac{x-r}{r}$	(3) $\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 3$	(4) px + qy + zr = 1	24.22	The equation $a'x + b'y + c'$ (1) (ab' - a'b)
24.	12 The direction ratios of	f a normal to the plane pass	sing through (1, 0, 0), (0, 1	, 0) and making an angle $\frac{\pi}{4}$ with		(3) (ab' - a'b
	the plane $x + y = 3$ ar		-1		24.23	The equati
	(1) 1, √2, 1	(2) 1, 1, $\sqrt{2}$	(3) ¹ , 1, 2	(4) $\sqrt{2}$, 1, 1	1	4x - 12y + 3 (1) $11x + 6y$
24.1	3 Equation, ax ² + by ² +	- cz ² + 2 fyz + 2 gzx + 2 hxy	+ 2 ux + 2 vy + 2 wz + d =	0 represents a sphere, if:		(3) 67x – 16
	(1) a = b = c (3) v = u = w		(2) f = g = h = 0 (4) a = b = c & f = g =		24.24	The image (1) $\alpha^2 + \beta^2$
	\$. 7	,		x y+1 z-2		(3) $\alpha \alpha' + \beta$
24.1	4 The equation of the p	plane through the point (–	1, 2, 0) and parallel to t	the lines $\frac{x}{3} = \frac{y+1}{0} = \frac{z-2}{-1}$ and	24.25	Equation of (1) x + 3 =
	$\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$	I AND TO DO TO THE MOST				(3) $\frac{x+3}{-2} =$
	(1) $x + 2y + 3z - 3 =$ (3) $x + 2y + 3z - 1 =$		(2) $x - 2y + 3z + 5 =$ (4) $x + y + 3z - 1 = 0$)	04.00	
24.15				ough a line, then the value o	24.26	The equat points. Where the points where the point of the
	$a^2 + b^2 + c^2 + 2abc$ is (1) 0		(3) 2	(4) 8		(1) AD
24.16	The centre of the circl	$\mathbf{e}\left \mathbf{\bar{r}}-\mathbf{\hat{i}}+2\mathbf{\hat{j}}+\mathbf{\hat{k}}\right =5$ and	r . (2i+2j−k) = 8 is:		24.2	7 The equa
	(1) 3î – 2k	(2) $\hat{i} + 2\hat{j} - 2\hat{k}$	(3) 4î	(4) none of these		(1) x + 2y
24.17	If co-ordinates of point of AB on CD is	s A,B,C,D be (2, 3, -1) (3	3, 5, –3) (1, 2, 3) and (3,	5, 7) respectively then projecti	on 24.2	8 lines $\frac{x}{1}$
	(1) $\sqrt{3}$	(2) $\sqrt{3} - \frac{3}{\sqrt{3}}$	(3) $\frac{9\sqrt{3}}{3}$	(4) $3\sqrt{3}$		(1) coine (3) Inter
4.18	Which of the following line?	planes intersects the pl	anes x – y + 2z = 3 an	d 4x + 3y – z = 1 along the sa	me 24.	29 The pla
	(1) $11x + 10y - 5z = 0$ (3) $5x + 2y + z = 2$	· ,	(2) $7x + 7y - 4z = 0$ (4) none of these			line with
.19	The sum of coordinate	es of a point lying in ya e, then its coordinates a	z-plane is 3. If its dis re	tance from xz-plane is twice	e its	(1) $\frac{x+}{79}$
(1) (0, 1, 2)	(2) (0, 2, 1)	(3) (0, -1, -2)	(4) (0, 5, -3)		(3) x - 2
Re	ating for better tomorrow			}	9	

2

24.2	0 The angle between two body diagonals	s of a cube is
	(1) $\cos^{-1}\left(\frac{4}{5}\right)$ (2) $\cos^{-1}\left(\frac{2}{3}\right)$) (3) $\sin^{-1}\left(\frac{1}{3}\right)$ (4) $\cos^{-1}\left(\frac{1}{3}\right)$
24.2	 If ∆ABC is a right angles iscosceles circumcenter of ∆ABC is (-2, 8, 8) t (1) 0 (2) 1 	
Leve	el : II (Tough)	(3) 2 (4) 3
24.22	The equation of the plane throug a'x + b'y + c'z + d' = 0 and parallel to (1) ($ab' - a'b$) $x + (bc' - b'c) y + (ad' - b'c)$	h the line of intersection of planes $ax + by + cz + d = 0$ the line $y = 0, z = 0$ is -a'd) = 0 (2) $(ab' - a'b) x + (bc' - b'c) y + (ad' - a'd) z = 0-a'd) = 0$ (4) $(ab' + a'b)y + (ac' + a'c)z + (ad' + a'd) = 0$
24.23		he acute angle between planes 3x - 6y + 2z + 5 = 0 an (2) 33x - 13y + 32z + 45 = 0 (4) 33x + 13y + 32z + 45 = 0
24.24	The image of the point P(α , β , γ) by th (1) $\alpha^2 + \beta^2 + \gamma^2 = \ell^2 + m^2 + n^2$ (3) $\alpha\alpha' + \beta\beta' + \gamma\gamma' = 0$	e plane ℓx + my + nz = 0 is Q(α', β', γ') then (2) $\alpha^2 + \beta^2 + \gamma^2 = (\alpha')^2 + (\beta')^2 + (\gamma')^2$ (4) $\ell (\alpha - \alpha') + m(\beta - \beta') + n(\gamma - \gamma') = 0$
24.25	Equation of a line passing through the (1) $x + 3 = y + 2 = z - 4$	point (-3, 2, -4) and equally inclined to the axes are (2) $x + 3 = y - 2 = z + 5$
	(3) $\frac{x+3}{-2} = \frac{y-2}{-2} = \frac{z+4}{-2}$	(4) $\frac{x+3}{-2} = \frac{y+2}{-2} = \frac{z-4}{-2}$
24.26	The equation of a plane is $2x - y - 3z$ points. Which of the following line segn (1) AD (2) AB	= 5 and A(1, 1, 1), B(2, 1, –3), C(1, –2, –2) and D(–3, 1, 2) are for ments are intersected by the plane? (3) BC (4) none of these
24.27	The equation of the plane containing t	he line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and the point (0, 7, -7) is
	(1) $x + 2y - z = 0$ (2) $x + y + z = 0$	= 0 (3) 3x + y + z = 0 (4) 4x + y + z = 0
24.28	lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x-1}{-2} = \frac{y-2}{-4}$	$=\frac{z-3}{-6}$ are
	(1) coincident(3) Intersect only at one point	(2) Perpendicular(4) Non intersecting
24.29	The plane $2x + 5y - 4z - 6 = 0$ and the	line $\frac{x-1}{3} = \frac{y-2}{4} = \frac{z+2}{3}$, then equation of the image of the g
	line with respect to the given plane is	
	(1) $\frac{x+2}{79} = \frac{y+2}{40} = \frac{z+5}{-247}$	(2) $\frac{x+2}{79} = \frac{y+2}{40} = \frac{z+5}{247}$
	(3) $\frac{x-1}{2} = \frac{y-2}{5} = \frac{z+2}{-4}$	(4) $\frac{x+2}{2} = \frac{y+2}{5} = \frac{z+5}{4}$

	TION - II : ASSERTION & REASONING TYPE $9x - 16 = \frac{9y - 1}{-1} = \frac{z}{-1}$ are coplanar	TC	
24.30	Statement - 1 : The lines $\frac{x-4}{1} = \frac{y+1}{-2} = \frac{z}{1}$ and $\frac{9x-16}{13} = \frac{9y-1}{7} = \frac{z}{-1}$ are coplanar Statement - 1 : The lines $\frac{x-4}{1} = \frac{y+1}{-2} = \frac{z}{1}$ and $\frac{9x-16}{13} = \frac{9y-1}{7} = \frac{z-2}{-1}$ are coplanar Statement - 1 : The lines $\frac{x-4}{1} = \frac{y+1}{-2} = \frac{z}{1}$ and $\frac{9x-16}{13} = \frac{9y-1}{7} = \frac{z-2}{-1}$ are coplanar	2	
	$x - y_1$ $z - z_1$ and $\frac{x - x_2}{b_2} = \frac{y - y_2}{c_2}$ are coplanar		
	Statement - 1 : The lines $\frac{x-4}{1} = \frac{y+1}{-2} = \frac{z}{1}$ and $\frac{z}{13}$ Statement - 2 : Two lines $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ are coplanar	SECT	1
	if $\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ a_2 = a_1 & b_2 = b_2 & c_2 = c_1 \end{vmatrix} = 0$	Level	1:
	 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False 	25.2	
	(4) Statement-1 is False, Statement-2 is True		
24.31	Consider the points A (0, 0,0), B(2, 0, 0), C(1, $\sqrt{3}$, 0) and D $\left(1, \frac{1}{\sqrt{3}}, \frac{2\sqrt{2}}{\sqrt{3}}\right)$	25.3	
	Statement-1: ABCD is a square.		
	Statement-2 : $ AB = BC = CD = DA $.(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.(3) Statement-1 is True, Statement-2 is False.(4) Statement-1 is False, Statement-2 is True	25.4	
24.32	Consider the lines	25.5	
	$\ell_1: \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{3}$ and $\ell_2: \frac{x-1}{3} = \frac{y-2}{2} = \frac{z-3}{-1}$	2010	
	Statement-1 : Shortest distance between the lines ℓ_1 and ℓ_2 is 0.	1	
	Statement-2 : The lines ℓ_1 and ℓ_2 intersect in the point (1, 2,3). which of the following is correct	25.6	
	 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. 	7	
	(3) Statement-1 is True, Statement-2 is False(4) Statement-1 is False, Statement-2 is True	25.7	
4.33	Consider the sphere		
1.00	S : $x^2 + y^2 + z^2 = 25$ and the plane p : $x + y + z = 4 \sqrt{3}$		
	Statement-1: The sphere 'S' and the plane 'p' have no net it is		
	which of the following is correct	25.8	
	 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. 	12.29	
	 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True 	12	
	(3) Statement-1 is True, Statement-2 is False	25.9	

$$\frac{2}{2} \frac{1}{10} \quad \text{Least value of tan' + } + \cos^{2} n - 6 \sin^{2} 0 \cos^{4} 3 \sin^{2} 0 + \cot^{4} b^{2} 2 \sin^{2} (1) 6 + \sqrt{10} \\
(1) 4 \quad (2) 6 \quad (3) 6 - \sqrt{10} \quad (4) 6 + \sqrt{10} \\
(3) 6 - \sqrt{10} \quad (4) 6 + \sqrt{10} \\
(3) 6 - \sqrt{10} \quad (4) 6 + \sqrt{10} \\
(3) 6 - \sqrt{10} \quad (4) 1 \\
(3) 7 + 2\sqrt{10} + 2\sqrt{10} \quad (5) + 2\sqrt{10} \quad (5) + 2\sqrt{10} \quad (6) + 2\sqrt{10} \\
(3) 7 + 2\sqrt{10} \quad (7) + 2\sqrt{10} \quad (7) + 2\sqrt{10} \quad (7) + 2\sqrt{10} \\
(3) 7 + 2\sqrt{10} \quad (7) + 2\sqrt{10} \quad (7) + 2\sqrt{10} \quad (7) + 2\sqrt{10} \quad (7) + 2\sqrt{10} \\
(3) 7 + 2\sqrt{10} \quad (7) + 2\sqrt{10} \\
(3) 7 + 2\sqrt{10} \quad (7) + 2\sqrt{10}$$

80 JEE (Main) -

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice.

2

25